Do you want to publish a course? Click here

Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction

215   0   0.0 ( 0 )
 Added by Xun-Wei Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.



rate research

Read More

We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.
159 - Zhen Wang , Cheng Jiang , Yong He 2021
The optical bistability have been studied theoretically in a multi-mode optomechanical system with two mechanical oscillators independently coupled to two cavities in addition to direct tunnel coupling between cavities. It is proved that the bistable behavior of mean intracavity photon number in the right cavity can be tuned by adjusting the strength of the pump laser beam driving the left cavity. And the mean intracavity photon number is relatively larger in the red sideband regime than that in the blue sideband regime. Moreover, we have shown that the double optical bistability of intracavity photon in the right cavity and the two steady-state positions of mechanical resonators can be observed when the control field power is increased to a critical value. Besides, the critical values for observing bistability and double bistability can be tuned by adjusting the coupling coefficient between two cavities and the coupling rates between cavities mode and mechanical mode.
The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical realizations, stable, miniaturized, low-cost devices are required. Sources with one or some of above performances have been demonstrated already, but it is quite challenging to have a source with all of the described characteristics simultaneously. Here we report on an integrated single-longitudinal-mode non-degenerate narrowband photon pair source, which exhibits all requirements needed for quantum applications. The device is composed of a periodically poled Ti-indiffused lithium niobate waveguide with high reflective dielectric mirror coatings deposited on the waveguide end-faces. Photon pairs with wavelengths around 890 nm and 1320 nm are generated via type II phase-matched parametric down-conversion. Clustering in this dispersive cavity restricts the whole conversion spectrum to one single-longitudinal-mode in a single cluster yielding a narrow bandwidth of only 60 MHz. The high conversion efficiency in the waveguide, together with the spectral clustering in the doubly resonant waveguide, leads to a high brightness of $3times10^4~$pairs/(s$cdot$mW$cdot$MHz). This source exhibits prominent single-longitudinal-mode purity and remarkable temporal shaping capability. Especially, due to temporal broadening, we can observe that the coherence time of the two-photon component of PDC state is actually longer than the one of the single photon states. The miniaturized monolithic design makes this source have various fiber communication applications.
Quantum state transfer between microwave and optical frequencies is essential for connecting superconducting quantum circuits to coherent optical systems and extending microwave quantum networks over long distances. To build such a hybrid `quantum Internet, an important experiment in the quantum regime is to entangle microwave and optical modes. Based on the model of a generic cavity electro-optomechanical system, we present a heralded scheme to generate entangled microwave--optical photon pairs, which can bypass the efficiency threshold for quantum channel capacity in direct transfer protocols. The parameter regime for entanglement verification is identified that is compatible with realistic experimental settings. Our scheme is feasible given the latest experimental progress on electro-optomechanics, and can be potentially generalized to various physical systems.
We introduce an optomechanical scheme for the probabilistic preparation of single-phonon Fock states of mechanical modes based on photo-subtraction. The quality of the produced mechanical state is confirmed by a number of indicators, including phonon statistics and conditional fidelity. We assess the detrimental effect of parameters such as the temperature of the mechanical system and address the feasibility of the scheme with state-of-the-art technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا