No Arabic abstract
This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes.
The gyrokinetic toroidal code (GTC) has been upgraded for global simulations by coupling the core and scrape-off layer (SOL) regions across the separatrix with field-aligned particle-grid interpolations. A fully kinetic particle pusher for high frequency waves (ion cyclotron frequency and beyond) and a guiding center pusher for low frequency waves have been implemented using cylindrical coordinates in a global toroidal geometry. The two integrators correctly capture the particle orbits and agree well with each other, conserving energy and canonical angular momentum. As a verification and application of this new capability, ion guiding center simulations have been carried out to study ion orbit losses at the edge of the DIII-D tokamak for single null magnetic separatrix discharges. The ion loss conditions are examined as a function of the pitch angle for cases without and with a radial electric field. The simulations show good agreement with past theoretical results and with experimentally observed feature in which high energy ions flow out along the ion drift orbits and then hit the divertor plates. A measure of the ion direct orbit loss fraction shows that the loss fraction increases with the ion energy for DIII-D in the initial velocity space. Finally, as a further verification of the capability of the new code, self-consistent simulations of zonal flows in the core region of the DIII-D tokamak were carried out. All DIII-D simulations were perfomed in the absence of turbulence.
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker, Physics of Plasmas 8, 441 (2001). Two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.
Nonlinear saturation of toroidal Alfven eigenmode (TAE) via ion induced scatterings is investigated in the short-wavelength gyrokinetic regime. It is found that the nonlinear evolution depends on the thermal ion b{eta} value. Here, b{eta} is the plasma thermal to magnetic pressure ratio. Both the saturation levels and associated energetic-particle transport coefficients are derived and estimated correspondingly.
The derivation and numerical implementation of a linearized version of the gyrokinetic (GK) Coulomb collision operator (Jorge R. et al., J. Plasma Phys. 85, 905850604 (2019)) and of the widely-used linearized GK Sugama collision operator (Sugama H. et al., Phys. Plasmas 16, 112503 (2009)) is reported. An approach based on a Hermite-Laguerre moment expansion of the perturbed gyrocenter distribution function is used, referred to as gyro-moment expansion. This approach allows considering arbitrary perpendicular wavenumber and expressing the two linearized GK operators as a linear combination of gyro-moments where the expansion coefficients are given by closed analytical expressions that depend on the perpendicular wavenumber and on the temperature and mass ratios of the colliding species. The drift-kinetic (DK) limits of the GK linearized Coulomb and Sugama operators are also obtained. Comparisons between the gyro-moment approach with the GK continuum code GENE are reported focusing on the ion-temperature-gradient (ITG) instability and zonal flow (ZF) damping, finding an excellent agreement. In particular, we demonstrate that the GK linearized Sugama yields a stronger collisional damping of the ZF residual compared to the GK linearized Coulomb. Finally, we show that the numerical efficiency of the gyro-moment approach increases with collisionality, a desired property for boundary plasma applications.
The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.