Do you want to publish a course? Click here

MWA Tied-Array Processing I: Calibration and Beamformation

241   0   0.0 ( 0 )
 Added by Stephen Ord
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Murchison Widefield Array is a low-frequency Square Kilometre Array precursor located at the Murchison Radio-astronomy Observatory in Western Australia. Primarily designed as an imaging telescope, but with a flexible signal path, the capabilities of this telescope have recently been extended to include off-line incoherent and tied-array beam formation using recorded antenna voltages. This has provided the capability for high-time and frequency resolution observations, including a pulsar science program. This paper describes the algorithms and pipeline that we have developed to form the tied array beam products from the summation of calibrated signals of the antenna elements, and presents example polarimetric profiles for PSRs J0437-4715 and J1900-2600 at 185 MHz.



rate research

Read More

Polarimetric studies of pulsars at low radio frequencies provide important observational insights into the pulsar emission mechanism and beam models, and probe the properties of the magneto-ionic interstellar medium (ISM). Aperture arrays are the main form of next-generation low-frequency telescopes, including the Murchison Widefield Array (MWA). These require a distinctly different approach to data processing (e.g. calibration and beamforming) compared to traditional dish antennas. As the second paper of this series, we present a verification of the MWAs pulsar polarimetry capability, using two bright southern pulsars, PSRs J0742-2822 and J1752-2806. Our observations simultaneously cover multiple frequencies (76-313 MHz) and were taken at multiple zenith angles during a single night for each pulsar. We show that the MWA can be reliably calibrated for zenith angles < 45 degree and frequencies < 270 MHz. We present the polarimetric profiles for PSRs J0742-2822 and J1752-2806 at frequencies lower than 300 MHz for the first time, along with an analysis of the linear polarisation degree and pulse profile evolution with frequency. For PSR J0742-2822, the measured degree of linear polarisation shows a rapid decrease at low frequencies, in contrast with the generally expected trend, which can be attributed to depolarisation effects from small-scale, turbulent, magneto-ionic ISM components. This effect has not been widely explored for pulsars in general, and will be further investigated in future work.
A radio interferometer uses time delays to maximize its response to radiation coming from a particular direction. These time delays compensate for differences in the time of arrival of the wavefront at the different elements of the interferometer, and for delays in the instruments signal chain. If the radio interferometer is operated as a phased array (tied array), the time delays cannot be accounted for after an observation, so they must be determined in advance. Our aim is to characterize the time delays between the stations in the core of the LOw Frequency ARray (LOFAR). We used radio holography to determine the time delays for the core stations of LOFAR (innermost 3.5 km). Using the multibeaming capability of LOFAR we map the voltage beam faster than with a raster scan, while simultaneously calibrating the observed beam continuously. For short radio holographic observations (60 s and 600 s) of 3C196, 3C147, and 3C48 we are able to derive time delays with errors of less than one nanosecond. After applying the derived time delays to the beamformer, the beam shows residuals of less than $20%$ with respect to the theoretical beam shape. Tied-array holography could be a way towards semi-real-time beam calibration for the Square Kilometer Array.
136 - S. Ord 2009
The MWA is a next-generation radio interferometer under construction in remote Western Australia. The data rate from the correlator makes storing the raw data infeasible, so the data must be processed in real-time. The processing task is of order ~10 TFLOPS. The remote location of the MWA limits the power that can be allocated to computing. We describe the design and implementation of elements of the MWA real-time data processing system which leverage the computing abilities of modern graphics processing units (GPUs). The matrix algebra and texture mapping capabilities of GPUs are well suited to the majority of tasks involved in real-time calibration and imaging. Considerable performance advantages over a conventional CPU-based reference implementation are obtained.
Searches for millisecond-duration, dispersed single pulses have become a standard tool used during radio pulsar surveys in the last decade. They have enabled the discovery of two new classes of sources: rotating radio transients and fast radio bursts. However, we are now in a regime where the sensitivity to single pulses in radio surveys is often limited more by the strong background of radio frequency interference (RFI, which can greatly increase the false-positive rate) than by the sensitivity of the telescope itself. To mitigate this problem, we introduce the Single-pulse Searcher (SpS). This is a new machine-learning classifier designed to identify astrophysical signals in a strong RFI environment, and optimized to process the large data volumes produced by the new generation of aperture array telescopes. It has been specifically developed for the LOFAR Tied-Array All-Sky Survey (LOTAAS), an ongoing survey for pulsars and fast radio transients in the northern hemisphere. During its development, SpS discovered 7 new pulsars and blindly identified ~80 known sources. The modular design of the software offers the possibility to easily adapt it to other studies with different instruments and characteristics. Indeed, SpS has already been used in other projects, e.g. to identify pulses from the fast radio burst source FRB 121102. The software development is complete and SpS is now being used to re-process all LOTAAS data collected to date.
The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have included building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint model fitting across multiple input images. The DESDM system has been deployed on dedicated development clusters and HPC systems in the US and Germany. An extensive program of testing with small rapid turn-around and larger campaign simulated datasets has been carried out. The system has also been tested on large real datasets, including Blanco Cosmology Survey data from the Mosaic2 camera. In Fall 2012 the DESDM system will be used for DECam commissioning, and, thereafter, the system will go into full science operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا