Do you want to publish a course? Click here

Single-pulse classifier for the LOFAR Tied-Array All-sky Survey

93   0   0.0 ( 0 )
 Added by Daniele Michilli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Searches for millisecond-duration, dispersed single pulses have become a standard tool used during radio pulsar surveys in the last decade. They have enabled the discovery of two new classes of sources: rotating radio transients and fast radio bursts. However, we are now in a regime where the sensitivity to single pulses in radio surveys is often limited more by the strong background of radio frequency interference (RFI, which can greatly increase the false-positive rate) than by the sensitivity of the telescope itself. To mitigate this problem, we introduce the Single-pulse Searcher (SpS). This is a new machine-learning classifier designed to identify astrophysical signals in a strong RFI environment, and optimized to process the large data volumes produced by the new generation of aperture array telescopes. It has been specifically developed for the LOFAR Tied-Array All-Sky Survey (LOTAAS), an ongoing survey for pulsars and fast radio transients in the northern hemisphere. During its development, SpS discovered 7 new pulsars and blindly identified ~80 known sources. The modular design of the software offers the possibility to easily adapt it to other studies with different instruments and characteristics. Indeed, SpS has already been used in other projects, e.g. to identify pulses from the fast radio burst source FRB 121102. The software development is complete and SpS is now being used to re-process all LOTAAS data collected to date.



rate research

Read More

We are using the LOw-Frequency ARray (LOFAR) to perform the LOFAR Tied-Array All-Sky (LOTAAS) survey for pulsars and fast transients. Here we present the astrometric and rotational parameters of 20 pulsars discovered as part of LOTAAS. These pulsars have regularly been observed with LOFAR at 149 MHz and the Lovell telescope at 1532 MHz, supplemented by some observations with the Lovell telescope at 334 MHz and the Nancay Radio Telescope at 1484 MHz. Timing models are calculated for the 20 pulsars, some of which are among the slowest-spinning pulsars known. PSR J1236-0159 rotates with a period P ~ 3.6 s, while 5 additional pulsars show P > 2 s. Also, the spin-down rates Pdot are, on average, low, with PSR J0815+4611 showing Pdot ~ 4E-18. Some of the pulse profiles, generically single-peaked, present complex shapes evolving with frequency. Multi-frequency flux measurements show that these pulsars have generically relatively steep spectra but exceptions are present, with values ranging between ~ -4 and -1. Among the pulsar sample, a large fraction shows large single-pulse variability, with 4 pulsars being undetectable more than 15% of the time and one tentatively classified as a Rotating Radio Transient. Two single-peaked pulsars show drifting sub-pulses.
We present an overview of the LOFAR Tied-Array All-Sky Survey (LOTAAS) for radio pulsars and fast transients. The survey uses the high-band antennas of the LOFAR Superterp, the dense inner part of the LOFAR core, to survey the northern sky (dec > 0 deg) at a central observing frequency of 135 MHz. A total of 219 tied-array beams (coherent summation of station signals, covering 12 square degrees), as well as three incoherent beams (covering 67 square degrees) are formed in each survey pointing. For each ofthe 222 beams, total intensity is recorded at 491.52 us time resolution. Each observation integrates for 1 hr and covers 2592 channels from 119 to 151 MHz. This instrumental setup allows LOTAAS to reach a detection threshold of 1 to 5 mJy for periodic emission. Thus far, the LOTAAS survey has resulted in the discovery of 73 radio pulsars. Among these are two mildly recycled binary millisecond pulsars (P = 13 and 33 ms), as well as the slowest-spinning radio pulsar currently known (P = 23.5 s). The survey has thus far detected 311 known pulsars, with spin periods ranging from 4 ms to 5.0 s and dispersion measures from 3.0 to 217 pc/cc. Known pulsars are detected at flux densities consistent with literature values. We find that the LOTAAS pulsar discoveries have, on average, longer spin periods than the known pulsar population. This may reflect different selection biases between LOTAAS and previous surveys, though it is also possible that slower-spinning pulsars preferentially have steeper radio spectra. LOTAAS is the deepest all-sky pulsar survey using a digital aperture array; we discuss some of the lessons learned that can inform the approach for similar surveys using future radio telescopes such as the Square Kilometre Array.
We report on the multi-frequency timing observations of 21 pulsars discovered in the LOFAR Tied-Array All-Sky Survey (LOTAAS). The timing data were taken at central frequencies of 149 MHz (LOFAR) as well as 334 and 1532 MHz (Lovell Telecope). The sample of pulsars includes 20 isolated pulsars and the first binary pulsar discovered by the survey, PSR J1658$+$3630. We modelled the timing properties of the pulsars, which showed that they have, on average, larger characteristic ages. We present the pulse profiles of the pulsars across the three observing bands, where PSR J1643$+$1338 showed profile evolution that appears not to be well-described by the radius-to-frequency-mapping model. Furthermore, we modelled the spectra of the pulsars across the same observing bands, using a simple power law, and found an average spectral index of $-1.9 pm 0.5$. Amongst the pulsars studied here, PSR J1657$+$3304 showed large flux density variations of a factor of 10 over 300 days, as well as mode changing and nulling on timescales of a few minutes. We modelled the rotational and orbital properties of PSR J1658$+$3630, which has a spin period of 33 ms in a binary orbit of 3.0 days with a companion of minimum mass of 0.87$M_{odot}$, likely a Carbon-Oxygen or Oxygen-Neon-Magnesium type white dwarf. PSR J1658$+$3630 has a dispersion measure of 3.0 pc cm$^{-3}$, making it possibly one of the closest binary pulsars known.
A radio interferometer uses time delays to maximize its response to radiation coming from a particular direction. These time delays compensate for differences in the time of arrival of the wavefront at the different elements of the interferometer, and for delays in the instruments signal chain. If the radio interferometer is operated as a phased array (tied array), the time delays cannot be accounted for after an observation, so they must be determined in advance. Our aim is to characterize the time delays between the stations in the core of the LOw Frequency ARray (LOFAR). We used radio holography to determine the time delays for the core stations of LOFAR (innermost 3.5 km). Using the multibeaming capability of LOFAR we map the voltage beam faster than with a raster scan, while simultaneously calibrating the observed beam continuously. For short radio holographic observations (60 s and 600 s) of 3C196, 3C147, and 3C48 we are able to derive time delays with errors of less than one nanosecond. After applying the derived time delays to the beamformer, the beam shows residuals of less than $20%$ with respect to the theoretical beam shape. Tied-array holography could be a way towards semi-real-time beam calibration for the Square Kilometer Array.
178 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا