Do you want to publish a course? Click here

AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles

130   0   0.0 ( 0 )
 Added by Charles Weill
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

AdaNet is a lightweight TensorFlow-based (Abadi et al., 2015) framework for automatically learning high-quality ensembles with minimal expert intervention. Our framework is inspired by the AdaNet algorithm (Cortes et al., 2017) which learns the structure of a neural network as an ensemble of subnetworks. We designed it to: (1) integrate with the existing TensorFlow ecosystem, (2) offer sensible default search spaces to perform well on novel datasets, (3) present a flexible API to utilize expert information when available, and (4) efficiently accelerate training with distributed CPU, GPU, and TPU hardware. The code is open-source and available at: https://github.com/tensorflow/adanet.



rate research

Read More

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.
Federated learning (FL) is a machine learning field in which researchers try to facilitate model learning process among multiparty without violating privacy protection regulations. Considerable effort has been invested in FL optimization and communication related researches. In this work, we introduce FedLab, a lightweight open-source framework for FL simulation. The design of FedLab focuses on FL algorithm effectiveness and communication efficiency. Also, FedLab is scalable in different deployment scenario. We hope FedLab could provide flexible API as well as reliable baseline implementations, and relieve the burden of implementing novel approaches for researchers in FL community.
Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong learning, few-shot learning, and transfer learning, attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified framework that supports almost all of these properties and approaches through one central mechanism. We also draw connections between many peculiarities of human learning (such as memory loss and rain man) and our framework. While we do not present any state-of-the-art results, we hope that this conceptual framework provides a novel perspective on existing work and proposes many new research directions.
Generative adversarial networks (GANs) generate data based on minimizing a divergence between two distributions. The choice of that divergence is therefore critical. We argue that the divergence must take into account the hypothesis set and the loss function used in a subsequent learning task, where the data generated by a GAN serves for training. Taking that structural information into account is also important to derive generalization guarantees. Thus, we propose to use the discrepancy measure, which was originally introduced for the closely related problem of domain adaptation and which precisely takes into account the hypothesis set and the loss function. We show that discrepancy admits favorable properties for training GANs and prove explicit generalization guarantees. We present efficient algorithms using discrepancy for two tasks: training a GAN directly, namely DGAN, and mixing previously trained generative models, namely EDGAN. Our experiments on toy examples and several benchmark datasets show that DGAN is competitive with other GANs and that EDGAN outperforms existing GAN ensembles, such as AdaGAN.
With the increasing scale of machine learning tasks, it has become essential to reduce the communication between computing nodes. Early work on gradient compression focused on the bottleneck between CPUs and GPUs, but communication-efficiency is now needed in a variety of different system architectures, from high-performance clusters to energy-constrained IoT devices. In the current practice, compression levels are typically chosen before training and settings that work well for one task may be vastly suboptimal for another dataset on another architecture. In this paper, we propose a flexible framework which adapts the compression level to the true gradient at each iteration, maximizing the improvement in the objective function that is achieved per communicated bit. Our framework is easy to adapt from one technology to the next by modeling how the communication cost depends on the compression level for the specific technology. Theoretical results and practical experiments indicate that the automatic tuning strategies significantly increase communication efficiency on several state-of-the-art compression schemes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا