No Arabic abstract
When a solid projectile is dropped onto a dense non-Brownian-particle suspension, the action of an extremely large resistance force on the projectile results in its drastic deceleration, followed by a rebound. In this study, we perform a set of simple experiments of dropping a solid-projectile impact onto a dense potato-starch suspension. From the kinematic data of the projectile motion, the restitution coefficient and timescale of the rebound are measured. By assuming linear viscoelasticity, the effective transient elasticity and viscosity can be estimated. We additionally estimate the Stokes viscosity on a longer timescale by measuring the slow sinking time of the projectile. The estimated elastic modulus and viscosity are consistent with separately measured previous results. In addition, the effect of mechanical vibration on the viscoelasticity is examined. As a result, we find that the viscoelasticity of the impacted dense suspension is not significantly affected by the mechanical vibration.
Dispersing small particles in a liquid can produce surprising behaviors when the solids fraction becomes large: rapid shearing drives these systems out of equilibrium and can lead to dramatic increases in viscosity (shear-thickening) or even solidification (shear jamming). These phenomena occur above a characteristic onset stress when particles are forced into frictional contact. Here we show via simulations how this can be understood within a framework that abstracts details of the forces acting at particle-particle contacts into general stress-activated constraints on relative particle movement. We find that focusing on just two constraints, affecting sliding and rolling at contact, can reproduce the experimentally observed shear thickening behavior quantitatively, despite widely different particle properties, surface chemistries, and suspending fluids. Within this framework parameters such as coefficients of sliding and rolling friction can each be viewed as a proxy for one or more forces of different physical or chemical origin, while the parameter magnitudes indicate the relative importance of the associated constraint. In this way, a new link is established that connects features observable in macroscale rheological measurements to classes of constraints arising from micro- or nano-scale properties.
The paper reports on the comparison of the wetting properties of super-hydrophobic silicon nanowires (NWs), using drop impact impalement and electrowetting (EW) experiments. A correlation between the resistance to impalement on both EW and drop impact is shown. From the results, it is evident that when increasing the length and density of NWs: (i) the thresholds for drop impact and EW irreversibility increase (ii) the contact-angle hysteresis after impalement decreases. This suggests that the structure of the NWs network could allow for partial impalement, hence preserving the reversibility, and that EW acts the same way as an external pressure. The most robust of our surfaces show a threshold to impalement higher than 35 kPa, while most of the super-hydrophobic surfaces tested so far have impalement threshold smaller than 10 kPa.
A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems.
Mixing a small amount of liquid into a powder can give rise to dry-looking granules; increasing the amount of liquid eventually produces a flowing suspension. We perform experiments on these phenomena using Spheriglass, an industrially-realistic model powder. Drawing on recent advances in understanding friction-induced shear thickening and jamming in suspensions, we offer a unified description of granulation and suspension rheology. A liquid incorporation phase diagram explains the existence of permanent and transient granules and the increase of granule size with liquid content. Our results point to rheology-based design principles for industrial granulation.
Self-cleaning surfaces often make use of superhydrophobic coatings that repel water. Here, we report a hydrophobic Si nanospring surface, that effectively suppresses wetting by repelling water droplets. We investigated the dynamic response of Si nanospring arrays fabricated by glancing angle deposition. The vertical standing nanospring arrays were approximately 250 nm tall and 60 nm apart, which allowed the droplets to rebound within a few milliseconds after contact. Amazingly, the morphology of the nanostructures influences the impact dynamics. The rebound time and coefficient of restitution were also found to be higher for Si nanosprings than vertical SI columns. It has been proposed that the restoring force of the Si nanosprings may be responsible for the water droplet rebound and can be explained by considering the droplet/nanospring surface as a coupled spring system. These nanospring surfaces may find applications in self-cleaning windows, liquid-repellent exteriors, glass panels of solar cells, and antifouling agents for roof tiling.