Do you want to publish a course? Click here

An Ultra-High Time Resolution Cosmic Ray Detection Mode for the Murchison Widefield Array

76   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radio-wavelength detection of extensive air showers (EAS) initiated by cosmic-ray interactions in the Earths atmosphere is a promising technique for investigating the origin of these particles and the physics of their interactions. The Low Frequency Array (LOFAR) and the Owens Valley Long Wavelength Array (OVRO-LWA) have both demonstrated that the dense cores of low frequency radio telescope arrays yield detailed information on the radiation ground pattern, which can be used to reconstruct key EAS properties and infer the primary cosmic-ray composition. Here, we demonstrate a new observation mode of the Murchison Widefield Array (MWA), tailored to the observation of the sub-microsecond coherent bursts of radiation produced by EAS. We first show how an aggregate 30.72 MHz bandwidth (3072x 10 kHz frequency channels) recorded at 0.1 ms resolution with the MWAs voltage capture system (VCS) can be synthesised back to the full bandwidth Nyquist resolution of 16.3 ns. This process, which involves `inverting two sets of polyphase filterbanks, retains 90.5% of the signal-to-noise of a cosmic ray signal. We then demonstrate the timing and positional accuracy of this mode by resolving the location of a calibrator pulse to within 5 m. Finally, preliminary observations show that the rate of nanosecond radio-frequency interference (RFI) events is 0.1 Hz, much lower than that found at the sites of other radio telescopes that study cosmic rays. We conclude that the identification of cosmic rays at the MWA, and hence with the low-frequency component of the Square Kilometre Array, is feasible with minimal loss of efficiency due to RFI.



rate research

Read More

The science cases for incorporating high time resolution capabilities into modern radio telescopes are as numerous as they are compelling. Science targets range from exotic sources such as pulsars, to our Sun, to recently detected possible extragalactic bursts of radio emission, the so-called fast radio bursts (FRBs). Originally conceived purely as an imaging telescope, the initial design of the Murchison Widefield Array (MWA) did not include the ability to access high time and frequency resolution voltage data. However, the flexibility of the MWAs software correlator allowed an off-the-shelf solution for adding this capability. This paper describes the system that records the 100 micro-second and 10 kHz resolution voltage data from the MWA. Example science applications, where this capability is critical, are presented, as well as accompanying commissioning results from this mode to demonstrate verification.
It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.
262 - S. M. Ord , B. Crosse , D. Emrich 2015
The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا