Do you want to publish a course? Click here

3-Lie algebra $A_{omega}^{delta}$-modules and induced modules

77   0   0.0 ( 0 )
 Added by Ruipu Bai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we define the induced modules of Lie algebra ad$(B)$ associated with a 3-Lie algebra $B$-module, and study the relation between 3-Lie algebra $A_{omega}^{delta}$-modules and induced modules of inner derivation algebra ad$(A_{omega}^{delta})$. We construct two infinite dimensional intermediate series modules of 3-Lie algebra $A_{omega}^{delta}$, and two infinite dimensional modules $(V, psi_{lambdamu})$ and $(V, phi_{mu})$ of the Lie algebra ad$(A_{omega}^{delta})$, and prove that only $(V, psi_{lambda0})$ and $(V, psi_{lambda1})$ are induced modules.



rate research

Read More

296 - Xiufu Zhang , Shaobin Tan 2009
In this paper, Whittaker modules for the Schrodinger-Virasoro algebra $mathfrak{sv}$ are defined. The Whittaker vectors and the irreducibility of the Whittaker modules are studied. $mathfrak{sv}$ has a triangular decomposition according to the Cartan algebra $mathfrak{h}:$ $$mathfrak{sv}=mathfrak{sv}^{-}oplusmathfrak{h}oplusmathfrak{sv}^{+}.$$ For any Lie algebra homomorphism $psi:mathfrak{sv}^{+}tomathbb{C}$, we can define Whittaker modules of type $psi.$ When $psi$ is nonsingular, the Whittaker vectors, the irreducibility and the classification of Whittaker modules are completely determined. When $psi$ is singular, by constructing some special Whittaker vectors, we find that the Whittaker modules are all reducible. Moreover, we get some more precise results for special $psi$.
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such that $A$ is the sub-adjacent 3-Lie algebra, and there is a local cocycle $3$-Lie bialgebraic structure on the $2m$-dimensional semi-direct product 3-Lie algebra $Altimes_{ad^*} A^*$, which is associated to the adjoint representation $(A, ad)$. By means of involutive derivations, the skew-symmetric solution of the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra $Altimes_{ad^*}A^*$, a class of 3-pre-Lie algebras, and eight and ten dimensional local cocycle 3-Lie bialgebras are constructed.
From a commutative associative algebra $A$, the infinite dimensional unital 3-Lie Poisson algebra~$mathfrak{L}$~is constructed, which is also a canonical Nambu 3-Lie algebra, and the structure of $mathfrak{L}$ is discussed. It is proved that: (1) there is a minimal set of generators $S$ consisting of six vectors; (2) the quotient algebra $mathfrak{L}/mathbb{F}L_{0, 0}^0$ is a simple 3-Lie Poisson algebra; (3) four important infinite dimensional 3-Lie algebras: 3-Virasoro-Witt algebra $mathcal{W}_3$, $A_omega^delta$, $A_{omega}$ and the 3-$W_{infty}$ algebra can be embedded in $mathfrak{L}$.
We study Lie bialgebroid crossed modules which are pairs of Lie algebroid crossed modules in duality that canonically give rise to Lie bialgebroids. A one-one correspondence between such Lie bialgebroid crossed modules and co-quadratic Manin triples $(K,P,Q)$ is established, where $K$ is a co-quadratic Lie algebroid and $(P,Q)$ is a pair of transverse Dirac structures in $K$.
105 - Ruipu Bai , Yinghua Zhang 2015
In the paper we study homogeneous Rota-Baxter operators with weight zero on the infinite dimensional simple $3$-Lie algebra $A_{omega}$ over a field $F$ ( $ch F=0$ ) which is realized by an associative commutative algebra $A$ and a derivation $Delta$ and an involution $omega$ ( Lemma mref{lem:rbd3} ). A homogeneous Rota-Baxter operator on $A_{omega}$ is a linear map $R$ of $A_{omega}$ satisfying $R(L_m)=f(m)L_m$ for all generators of $A_{omega}$, where $f : A_{omega} rightarrow F$. We proved that $R$ is a homogeneous Rota-Baxter operator on $A_{omega}$ if and only if $R$ is the one of the five possibilities $R_{0_1}$, $R_{0_2}$,$R_{0_3}$,$R_{0_4}$ and $R_{0_5}$, which are described in Theorem mref{thm:thm1}, mref{thm:thm4}, mref{thm:thm01}, mref{thm:thm03} and mref{thm:thm04}. By the five homogeneous Rota-Baxter operators $R_{0_i}$, we construct new $3$-Lie algebras $(A, [ , , ]_i)$ for $1leq ileq 5$, such that $R_{0_i}$ is the homogeneous Rota-Baxter operator on $3$-Lie algebra $(A, [ , , ]_i)$, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا