Do you want to publish a course? Click here

Finite temperature CFT results for all couplings: O(N) model in 2+1 dimensions

157   0   0.0 ( 0 )
 Added by Paul Romatschke
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 dimensions, which is analytically solvable at finite temperature $T$ for all couplings $lambda$ in the large N limit. I find that the entropy density monotonically decreases from the Stefan-Boltzmann limit at $lambda=0$ to exactly 4/5 of the Stefan-Boltzmann limit at $lambda=infty$. Calculating the retarded energy-momentum tensor correlator in the scalar channel at $lambda=infty$, I find that it has two logarithmic branch cuts originating at $omega=pm 4 T ln frac{1+sqrt{5}}{2}$, but no singularities in the whole complex frequency plane. I show that the ratio 4/5 and the location of the branch points both are universal within a large class of bosonic CFTs in 2+1 dimensions.



rate research

Read More

Pure CFTs have vanishing $beta$-function at any value of the coupling. One example of a pure CFT is the O(N) Wess-Zumino model in 2+1 dimensions in the large N limit. This model can be analytically solved at finite temperature for any value of the coupling, and we find that its entropy density at strong coupling is exactly equal to 31/35 of the non-interacting Stefan-Boltzmann result. We show that a large class of theories with equal numbers of N-component fermions and bosons, supersymmetric or not, for a large class of interactions, exhibit the same universal ratio. For unequal numbers of fermions and bosons we find that the strong-weak thermodynamic ratio is bounded to lie in between 4/5 and 1.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative features both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
The O(N) model in 1+1 dimensions presents some features in common with Yang-Mills theories: asymptotic freedom, trace anomaly, non-petrurbative generation of a mass gap. An analytical approach to determine the termodynamical properties of the O(3) model is presented and compared to lattice results. Here the focus is on the pressure: it is shown how to derive the pressure in the CJT formalism at the one-loop level by making use of the auxiliary field method. Then, the pressure is compared to lattice results.
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order $1/N$, and the CFT-data for the non-singlet currents to order $1/N^2$. To order $1/N$ our results are in perfect agreement with those in the literature. To order $1/N^2$ we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge $C_J$ to this order.
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا