No Arabic abstract
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 dimensions, which is analytically solvable at finite temperature $T$ for all couplings $lambda$ in the large N limit. I find that the entropy density monotonically decreases from the Stefan-Boltzmann limit at $lambda=0$ to exactly 4/5 of the Stefan-Boltzmann limit at $lambda=infty$. Calculating the retarded energy-momentum tensor correlator in the scalar channel at $lambda=infty$, I find that it has two logarithmic branch cuts originating at $omega=pm 4 T ln frac{1+sqrt{5}}{2}$, but no singularities in the whole complex frequency plane. I show that the ratio 4/5 and the location of the branch points both are universal within a large class of bosonic CFTs in 2+1 dimensions.
Pure CFTs have vanishing $beta$-function at any value of the coupling. One example of a pure CFT is the O(N) Wess-Zumino model in 2+1 dimensions in the large N limit. This model can be analytically solved at finite temperature for any value of the coupling, and we find that its entropy density at strong coupling is exactly equal to 31/35 of the non-interacting Stefan-Boltzmann result. We show that a large class of theories with equal numbers of N-component fermions and bosons, supersymmetric or not, for a large class of interactions, exhibit the same universal ratio. For unequal numbers of fermions and bosons we find that the strong-weak thermodynamic ratio is bounded to lie in between 4/5 and 1.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative features both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
The O(N) model in 1+1 dimensions presents some features in common with Yang-Mills theories: asymptotic freedom, trace anomaly, non-petrurbative generation of a mass gap. An analytical approach to determine the termodynamical properties of the O(3) model is presented and compared to lattice results. Here the focus is on the pressure: it is shown how to derive the pressure in the CJT formalism at the one-loop level by making use of the auxiliary field method. Then, the pressure is compared to lattice results.
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order $1/N$, and the CFT-data for the non-singlet currents to order $1/N^2$. To order $1/N$ our results are in perfect agreement with those in the literature. To order $1/N^2$ we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge $C_J$ to this order.
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.