Do you want to publish a course? Click here

Rendering of Complex Heterogenous Scenes using Progressive Blue Surfels

282   0   0.0 ( 0 )
 Added by Sascha Brandt
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a technique for rendering highly complex 3D scenes in real-time by generating uniformly distributed points on the scenes visible surfaces. The technique is applicable to a wide range of scene types, like scenes directly based on complex and detailed CAD data consisting of billions of polygons (in contrast to scenes handcrafted solely for visualization). This allows to visualize such scenes smoothly even in VR on a HMD with good image quality, while maintaining the necessary frame-rates. In contrast to other point based rendering methods, we place points in an approximated blue noise distribution only on visible surfaces and store them in a highly GPU efficient data structure, allowing to progressively refine the number of rendered points to maximize the image quality for a given target frame rate. Our evaluation shows that scenes consisting of a high amount of polygons can be rendered with interactive frame rates with good visual quality on standard hardware.



rate research

Read More

We present a new sound rendering pipeline that is able to generate plausible sound propagation effects for interactive dynamic scenes. Our approach combines ray-tracing-based sound propagation with reverberation filters using robust automatic reverb parameter estimation that is driven by impulse responses computed at a low sampling rate.We propose a unified spherical harmonic representation of directional sound in both the propagation and auralization modules and use this formulation to perform a constant number of convolution operations for any number of sound sources while rendering spatial audio. In comparison to previous geometric acoustic methods, we achieve a speedup of over an order of magnitude while delivering similar audio to high-quality convolution rendering algorithms. As a result, our approach is the first capable of rendering plausible dynamic sound propagation effects on commodity smartphones.
This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach can handle large sets of images, acquired from a nearly planar or infinitely distant scene at different resolutions in object domain and under variable local or global illumination conditions. It allows for efficient user guidance as its progressive nature provides a valid and consistent reconstruction at any moment during the online refinement process. Our approach avoids global optimization techniques, as commonly used in the field of image refinement, and progressively incorporates new imagery into a dynamically extendable and memory-efficient Laplacian pyramid. Our image registration process includes a coarse homography and a local refinement stage using optical flow. Photometric consistency is achieved by retaining the photometric intensities given in a reference image, while it is being refined. Globally blurred imagery and local geometric inconsistencies due to, e.g. motion are detected and removed prior to image fusion. We demonstrate the quality and robustness of our approach using several image and video sequences, including handheld acquisition with mobile phones and zooming sequences with consumer cameras.
We present a technique for rendering point clouds using a neural network. Existing point rendering techniques either use splatting, or first reconstruct a surface mesh that can then be rendered. Both of these techniques require solving for global point normal orientation, which is a challenging problem on its own. Furthermore, splatting techniques result in holes and overlaps, whereas mesh reconstruction is particularly challenging, especially in the cases of thin surfaces and sheets. We cast the rendering problem as a conditional image-to-image translation problem. In our formulation, Z2P, i.e., depth-augmented point features as viewed from target camera view, are directly translated by a neural network to rendered images, conditioned on control variables (e.g., color, light). We avoid inevitable issues with splatting (i.e., holes and overlaps), and bypass solving the notoriously challenging surface reconstruction problem or estimating oriented normals. Yet, our approach results in a rendered image as if a surface mesh was reconstructed. We demonstrate that our framework produces a plausible image, and can effectively handle noise, non-uniform sampling, thin surfaces / sheets, and is fast.
90 - Jules Vidal , Joseph Budin , 2019
This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computation of a persistence diagram which is representative of the set, and which visually conveys the number, data ranges and saliences of the main features of interest found in the set. Such representative diagrams are obtained by computing explicitly the discrete Wasserstein barycenter of the set of persistence diagrams, a notoriously computationally intensive task. In particular, we revisit efficient algorithms for Wasserstein distance approximation [12,51] to extend previous work on barycenter estimation [94]. We present a new fast algorithm, which progressively approximates the barycenter by iteratively increasing the computation accuracy as well as the number of persistent features in the output diagram. Such a progressivity drastically improves convergence in practice and allows to design an interruptible algorithm, capable of respecting computation time constraints. This enables the approximation of Wasserstein barycenters within interactive times. We present an application to ensemble clustering where we revisit the k-means algorithm to exploit our barycenters and compute, within execution time constraints, meaningful clusters of ensemble data along with their barycenter diagram. Extensive experiments on synthetic and real-life data sets report that our algorithm converges to barycenters that are qualitatively meaningful with regard to the applications, and quantitatively comparable to previous techniques, while offering an order of magnitude speedup when run until convergence (without time constraint). Our algorithm can be trivially parallelized to provide additional speedups in practice on standard workstations. [...]
Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like hair, volumetric representations like Neural Volumes are too low-resolution given a reasonable memory budget, and high-resolution implicit representations like Neural Radiance Fields are too slow for use in real-time applications. We present Mixture of Volumetric Primitives (MVP), a representation for rendering dynamic 3D content that combines the completeness of volumetric representations with the efficiency of primitive-based rendering, e.g., point-based or mesh-based methods. Our approach achieves this by leveraging spatially shared computation with a deconvolutional architecture and by minimizing computation in empty regions of space with volumetric primitives that can move to cover only occupied regions. Our parameterization supports the integration of correspondence and tracking constraints, while being robust to areas where classical tracking fails, such as around thin or translucent structures and areas with large topological variability. MVP is a hybrid that generalizes both volumetric and primitive-based representations. Through a series of extensive experiments we demonstrate that it inherits the strengths of each, while avoiding many of their limitations. We also compare our approach to several state-of-the-art methods and demonstrate that MVP produces superior results in terms of quality and runtime performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا