Do you want to publish a course? Click here

Z2P: Instant Rendering of Point Clouds

230   0   0.0 ( 0 )
 Added by Gal Metzer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a technique for rendering point clouds using a neural network. Existing point rendering techniques either use splatting, or first reconstruct a surface mesh that can then be rendered. Both of these techniques require solving for global point normal orientation, which is a challenging problem on its own. Furthermore, splatting techniques result in holes and overlaps, whereas mesh reconstruction is particularly challenging, especially in the cases of thin surfaces and sheets. We cast the rendering problem as a conditional image-to-image translation problem. In our formulation, Z2P, i.e., depth-augmented point features as viewed from target camera view, are directly translated by a neural network to rendered images, conditioned on control variables (e.g., color, light). We avoid inevitable issues with splatting (i.e., holes and overlaps), and bypass solving the notoriously challenging surface reconstruction problem or estimating oriented normals. Yet, our approach results in a rendered image as if a surface mesh was reconstructed. We demonstrate that our framework produces a plausible image, and can effectively handle noise, non-uniform sampling, thin surfaces / sheets, and is fast.



rate research

Read More

Establishing a consistent normal orientation for point clouds is a notoriously difficult problem in geometry processing, requiring attention to both local and global shape characteristics. The normal direction of a point is a function of the local surface neighborhood; yet, point clouds do not disclose the full underlying surface structure. Even assuming known geodesic proximity, calculating a consistent normal orientation requires the global context. In this work, we introduce a novel approach for establishing a globally consistent normal orientation for point clouds. Our solution separates the local and global components into two different sub-problems. In the local phase, we train a neural network to learn a coherent normal direction per patch (i.e., consistently oriented normals within a single patch). In the global phase, we propagate the orientation across all coherent patches using a dipole propagation. Our dipole propagation decides to orient each patch using the electric field defined by all previously orientated patches. This gives rise to a global propagation that is stable, as well as being robust to nearby surfaces, holes, sharp features and noise.
Geometric model fitting is a fundamental task in computer graphics and computer vision. However, most geometric model fitting methods are unable to fit an arbitrary geometric model (e.g. a surface with holes) to incomplete data, due to that the similarity metrics used in these methods are unable to measure the rigid partial similarity between arbitrary models. This paper hence proposes a novel rigid geometric similarity metric, which is able to measure both the full similarity and the partial similarity between arbitrary geometric models. The proposed metric enables us to perform partial procedural geometric model fitting (PPGMF). The task of PPGMF is to search a procedural geometric model space for the model rigidly similar to a query of non-complete point set. Models in the procedural model space are generated according to a set of parametric modeling rules. A typical query is a point cloud. PPGMF is very useful as it can be used to fit arbitrary geometric models to non-complete (incomplete, over-complete or hybrid-complete) point cloud data. For example, most laser scanning data is non-complete due to occlusion. Our PPGMF method uses Markov chain Monte Carlo technique to optimize the proposed similarity metric over the model space. To accelerate the optimization process, the method also employs a novel coarse-to-fine model dividing strategy to reject dissimilar models in advance. Our method has been demonstrated on a variety of geometric models and non-complete data. Experimental results show that the PPGMF method based on the proposed metric is able to fit non-complete data, while the method based on other metrics is unable. It is also shown that our method can be accelerated by several times via early rejection.
Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like hair, volumetric representations like Neural Volumes are too low-resolution given a reasonable memory budget, and high-resolution implicit representations like Neural Radiance Fields are too slow for use in real-time applications. We present Mixture of Volumetric Primitives (MVP), a representation for rendering dynamic 3D content that combines the completeness of volumetric representations with the efficiency of primitive-based rendering, e.g., point-based or mesh-based methods. Our approach achieves this by leveraging spatially shared computation with a deconvolutional architecture and by minimizing computation in empty regions of space with volumetric primitives that can move to cover only occupied regions. Our parameterization supports the integration of correspondence and tracking constraints, while being robust to areas where classical tracking fails, such as around thin or translucent structures and areas with large topological variability. MVP is a hybrid that generalizes both volumetric and primitive-based representations. Through a series of extensive experiments we demonstrate that it inherits the strengths of each, while avoiding many of their limitations. We also compare our approach to several state-of-the-art methods and demonstrate that MVP produces superior results in terms of quality and runtime performance.
We present multispectral rendering techniques for visualizing layered materials found in biological specimens. We are the first to use acquired data from the near-infrared and ultraviolet spectra for non-photorealistic rendering (NPR). Several plant and animal species are more comprehensively understood by multispectral analysis. However, traditional NPR techniques ignore unique information outside the visible spectrum. We introduce algorithms and principles for processing wavelength dependent surface normals and reflectance. Our registration and feature detection methods are used to formulate stylization effects not considered by current NPR methods including: Spectral Band Shading which isolates and emphasizes shape features at specific wavelengths at multiple scales. Experts in our user study demonstrate the effectiveness of our system for applications in the biological sciences.
We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using non-differentiable rasterization, then applies differentiable, depth-aware point splatting to produce the final image. Our approach requires no differentiable meshing or rasterization steps, making it efficient for large 3D models and applicable to isosurfaces extracted from implicit surface definitions. We demonstrate the effectiveness of our method for implicit-, mesh-, and parametric-surface-based inverse rendering and neural-network training applications. In particular, we show for the first time efficient, differentiable rendering of an isosurface extracted from a neural radiance field (NeRF), and demonstrate surface-based, rather than volume-based, rendering of a NeRF.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا