No Arabic abstract
Beta-delayed-neutron ($beta$n) spectroscopy was performed using the Beta-decay Paul Trap and an array of radiation detectors. The $beta$n branching ratios and energy spectra for $^{135,136}$Sb and $^{140}$I were obtained by measuring the time of flight of recoil ions emerging from the trapped ion cloud. These nuclei are located at the edge of an isotopic region identified as having $beta$n branching ratios that impact the r-process abundance pattern around the A~130 peak. For $^{135,136}$Sb and $^{140}$I, $beta$n branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were determined, respectively. The $beta$n energy spectra obtained for $^{135}$Sb and $^{140}$I are compared with results from direct neutron measurements, and the $beta$n energy spectrum for $^{136}$Sb has been measured for the first time.
Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
The decays of the $beta$-delayed neutron emitters $^{137}$I and $^{95}$Rb have been studied with the total absorption $gamma$-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption $gamma$-ray spectrometer, a segmented detector composed of eighteen NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt $gamma$-rays and delayed neutron interactions to eliminate this source of contamination. Due to the sensitivity of our spectrometer, we have found a significant amount of $beta$-intensity to states above the neutron separation energy that de-excite by $gamma$-rays, comparable to the neutron emission probability. The competition between $gamma$ de-excitation and neutron emission has been compared with Hauser-Feshbach calculations, and it can be understood as a nuclear structure effect. In addition, we have studied the impact of the $beta$-intensity distributions determined in this work on reactor decay heat and reactor antineutrino spectrum summation calculations. The robustness of our results is demonstrated by a thorough study of uncertainties, and with the reproduction of the spectra of the individual modules and the module-multiplicity gated spectra. This work represents the state-of-the-art of our analysis methodology for segmented total absorption spectrometers.
Background: $beta$-delayed multiple neutron emission has been observed for some nuclei with A$leq$100, with $^{100}$Rb being the heaviest $beta$2n emitter measured to date. So far, only 25 P$_{2n}$ values have been determined for the $sim$300 nuclei that may decay in this way. Accordingly, it is of interest to measure P$_{2n}$ values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such measurement for nuclei with A$>$100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of astrophysical nucleosynthesis processes such as the $r$-process, and safety inputs for nuclear reactors. Purpose: To determine for the first time the two neutron branching ratio, P$_{2n}$ value, for $^{136}$Sb through a direct neutron measurement, and to provide precise P$_{1n}$ values for $^{136}$Sb and $^{136}$Te. Method: Pure beams were provided by the JYFLTRAP at the IGISOL facility of the University of Jyvaskyla, Finland. The purified ions were implanted into a moving tape at the end of the beam line. The detection setup consisted of a plastic scintillator placed right behind the implantation point, and the BELEN detector, based on neutron counters embedded in a polyethylene matrix. The analysis was based on the study of the $beta$- and neutron- growth-and-decay curves and the $beta$-one-neutron and $beta$-two-neutron time correlations. Results: The P$_{2n}$ value of $^{136}$Sb was found to be 0.14(3)% and the measured P$_{1n}$ values for $^{136}$Sb and $^{136}$Te were found to be 32.2(15)% and 1.47(6)%, respectively. The measured P$_{2n}$ value is a factor 44 smaller than predicted by the FRDM+QRPA model used for $r$-process calculations.
The half-lives of three $beta$ decaying states of $^{131}_{~49}$In$_{82}$ have been measured with the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility to be $T_{1/2}(1/2^-)=328(15)$~ms, $T_{1/2}(9/2^+)=265(8)$~ms, and $T_{1/2}(21/2^+)=323(55)$~ms, respectively. The first observation of $gamma$-rays following the $beta n$ decay of $^{131}$In into $^{130}$Sn is reported. The $beta$-delayed neutron emission probability is determined to be $P_{1n} = 12(7)%$ for the $21/2^+$ state and $2.3(3)%$ from the combined $1/2^-$ and $9/2^+$ states of $^{131}_{~49}$In$_{82}$ observed in this experiment. A significant expansion of the decay scheme of $^{131}$In, including 17 new excited states and 34 new $gamma$-ray transitions in $^{131}_{~50}$Sn$_{81}$ is also reported. This leads to large changes in the deduced $beta$ branching ratios to some of the low-lying states of $^{131}$Sn compared to previous work with implications for the strength of the first-forbidden $beta$ transitions in the vicinity of doubly-magic $^{132}_{~50}$Sn$_{82}$.
Beta-delayed neutron emission is important for nuclear structure and astrophysics as well as for reactor applications. Significant advances in nuclear experimental techniques in the past two decades have led to a wealth of new measurements that remain to be incorporated in the databases. We report on a coordinated effort to compile and evaluate all the available beta-delayed neutron emission data. The different measurement techniques have been assessed and the data have been compared with semi-microscopic and microscopic-macroscopic models. The new microscopic database has been tested against aggregate total delayed neutron yields, time-dependent group parameters in 6-and 8-group re-presentation, and aggregate delayed neutron spectra. New recommendations of macroscopic delayed-neutron data for fissile materials of interest to applications are also presented. The new Reference Database for Beta-Delayed Neutron Emission Data is available online at: http://www-nds.iaea.org/beta-delayed-neutron/database.html.