No Arabic abstract
The half-lives of three $beta$ decaying states of $^{131}_{~49}$In$_{82}$ have been measured with the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility to be $T_{1/2}(1/2^-)=328(15)$~ms, $T_{1/2}(9/2^+)=265(8)$~ms, and $T_{1/2}(21/2^+)=323(55)$~ms, respectively. The first observation of $gamma$-rays following the $beta n$ decay of $^{131}$In into $^{130}$Sn is reported. The $beta$-delayed neutron emission probability is determined to be $P_{1n} = 12(7)%$ for the $21/2^+$ state and $2.3(3)%$ from the combined $1/2^-$ and $9/2^+$ states of $^{131}_{~49}$In$_{82}$ observed in this experiment. A significant expansion of the decay scheme of $^{131}$In, including 17 new excited states and 34 new $gamma$-ray transitions in $^{131}_{~50}$Sn$_{81}$ is also reported. This leads to large changes in the deduced $beta$ branching ratios to some of the low-lying states of $^{131}$Sn compared to previous work with implications for the strength of the first-forbidden $beta$ transitions in the vicinity of doubly-magic $^{132}_{~50}$Sn$_{82}$.
The $beta$-decay half-lives of 55 neutron-rich nuclei $^{134-139}$Sn, $^{134-142}$Sb, $^{137-144}$Te, $^{140-146}$I, $^{142-148}$Xe, $^{145-151}$Cs, $^{148-153}$Ba, $^{151-155}$La were measured at the Radioactive Isotope Beam Factory (RIBF) employing the projectile fission fragments of $^{238}$U. The nuclear level structure, which relates to deformation, has a large effect on the half-lives. The impact of newly-measured half-lives on modeling the astrophysical origin of the heavy elements is studied in the context of $r$ process nucleosynthesis. For a wide variety of astrophysical conditions, including those in which fission recycling occurs, the half-lives have an important local impact on the second ($A$ $approx$ 130) peak.
Remarkable results have been published recently on the $beta$ decay of $^{56}$Zn. In particular, the rare and exotic $beta$-delayed $gamma$-proton emission has been detected for the first time in the $fp$ shell. Here we focus the discussion on this exotic decay mode and on the observed competition between $beta$-delayed protons and $beta$-delayed $gamma$ rays from the Isobaric Analogue State.
We report the result of the search for neutrinoless double beta decay of $^{82}$Se obtained with CUPID-0, the first large array of scintillating Zn$^{82}$Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr $^{82}$Se exposure and we set the most stringent lower limit on the onu $^{82}$Se half-life T$^{0 u}_{1/2}>$ 2.4$times mathrm{10}^{24}$ yr (90% credible interval), which corresponds to an effective Majorana neutrino mass m$_{betabeta} <$ (376-770) meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of al particles and allows to suppress the background in the region of interest down to (3.6$^{+1.9}_{-1.4}$)$times$10$^{-3}$ckky, an unprecedented level for this technique.
A very exotic decay mode at the proton drip-line, $beta$-delayed $gamma$-proton decay, has been observed in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed following the $beta$ decay. The fragmentation of the IAS in $^{56}$Cu has also been observed for the first time. The results were reported in a recent publication. At the time of publication the authors were puzzled by the competition between proton and $gamma$ decays from the main component of the IAS. Here we outline a possible explanation based on the nuclear structure properties of the three nuclei involved, namely $^{56}$Zn, $^{56}$Cu and $^{55}$Ni, close to the doubly magic nucleus $^{56}$Ni. From the fragmentation of the Fermi strength and the excitation energy of the two populated 0$^{+}$ states we could deduce the off-diagonal matrix element of the charge-dependent part of the Hamiltonian responsible for the mixing. These results are compared with the decay of $^{55}$Cu with one proton less than $^{56}$Zn. For completeness we summarise the results already published.
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to solar neutrino interactions with BB nuclei of $^{82}$Se, $^{100}$Mo, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.