No Arabic abstract
Given two symmetric and positive semidefinite square matrices $A, B$, is it true that any matrix given as the product of $m$ copies of $A$ and $n$ copies of $B$ in a particular sequence must be dominated in the spectral norm by the ordered matrix product $A^m B^n$? For example, is $$ | AABAABABB | leq | AAAAABBBB | ? $$ Drury has characterized precisely which disordered words have the property that an inequality of this type holds for all matrices $A,B$. However, the $1$-parameter family of counterexamples Drury constructs for these characterizations is comprised of $3 times 3$ matrices, and thus as stated the characterization applies only for $N times N$ matrices with $N geq 3$. In contrast, we prove that for $2 times 2$ matrices, the general rearrangement inequality holds for all disordered words. We also show that for larger $N times N$ matrices, the general rearrangement inequality holds for all disordered words, for most $A,B$ (in a sense of full measure) that are sufficiently small perturbations of the identity.
We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newtons inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.
The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus inequalities. Our results are stronger and more general than the existing ones.
We present inequalities related to generalized matrix function for positive semidefinite block matrices. We introduce partial generalized matrix functions corresponding to partial traces and then provide an unified extension of the recent inequalities due to Choi [6], Lin [14] and Zhang et al. [5,19]. We demonstrate the applications of a positive semidefinite $3times 3$ block matrix, which motivates us to give a simple alternative proof of Dragomirs inequality and Kreins inequality.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on