Do you want to publish a course? Click here

On Matrix Rearrangement Inequalities

79   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Given two symmetric and positive semidefinite square matrices $A, B$, is it true that any matrix given as the product of $m$ copies of $A$ and $n$ copies of $B$ in a particular sequence must be dominated in the spectral norm by the ordered matrix product $A^m B^n$? For example, is $$ | AABAABABB | leq | AAAAABBBB | ? $$ Drury has characterized precisely which disordered words have the property that an inequality of this type holds for all matrices $A,B$. However, the $1$-parameter family of counterexamples Drury constructs for these characterizations is comprised of $3 times 3$ matrices, and thus as stated the characterization applies only for $N times N$ matrices with $N geq 3$. In contrast, we prove that for $2 times 2$ matrices, the general rearrangement inequality holds for all disordered words. We also show that for larger $N times N$ matrices, the general rearrangement inequality holds for all disordered words, for most $A,B$ (in a sense of full measure) that are sufficiently small perturbations of the identity.



rate research

Read More

197 - Mario Kummer 2020
We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newtons inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.
228 - Bo-Yan Xi , Fuzhen Zhang 2021
The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus inequalities. Our results are stronger and more general than the existing ones.
We present inequalities related to generalized matrix function for positive semidefinite block matrices. We introduce partial generalized matrix functions corresponding to partial traces and then provide an unified extension of the recent inequalities due to Choi [6], Lin [14] and Zhang et al. [5,19]. We demonstrate the applications of a positive semidefinite $3times 3$ block matrix, which motivates us to give a simple alternative proof of Dragomirs inequality and Kreins inequality.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on $[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا