Do you want to publish a course? Click here

Poorly connected groups

174   0   0.0 ( 0 )
 Added by David Hume
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We investigate groups whose Cayley graphs have poor-ly connected subgraphs. We prove that a finitely generated group has bounded separation in the sense of Benjamini--Schramm--Timar if and only if it is virtually free. We then prove a gap theorem for connectivity of finitely presented groups, and prove that there is no comparable theorem for all finitely generated groups. Finally, we formulate a connectivity version of the conjecture that every group of type $F$ with no Baumslag-Solitar subgroup is hyperbolic, and prove it for groups with at most quadratic Dehn function.



rate research

Read More

A graph $Gamma$ is $k$-connected-homogeneous ($k$-CH) if $k$ is a positive integer and any isomorphism between connected induced subgraphs of order at most $k$ extends to an automorphism of $Gamma$, and connected-homogeneous (CH) if this property holds for all $k$. Locally finite, locally connected graphs often fail to be 4-CH because of a combinatorial obstruction called the unique $x$ property; we prove that this property holds for locally strongly regular graphs under various purely combinatorial assumptions. We then classify the locally finite, locally connected 4-CH graphs. We also classify the locally finite, locally disconnected 4-CH graphs containing 3-cycles and induced 4-cycles, and prove that, with the possible exception of locally disconnected graphs containing 3-cycles but no induced 4-cycles, every finite 7-CH graph is CH.
A finite group $G$ is called a Schur group, if any Schur ring over $G$ is associated in a natural way with a subgroup of $Sym(G)$ that contains all right translations. Recently, the authors have completely identified the cyclic Schur groups. In this paper it is shown that any abelian Schur group belongs to one of several explicitly given families only. In particular, any non-cyclic abelian Schur group of odd order is isomorphic to $Z_3times Z_{3^k}$ or $Z_3times Z_3times Z_p$ where $kge 1$ and $p$ is a prime. In addition, we prove that $Z_2times Z_2times Z_p$ is a Schur group for every prime $p$.
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups $mathrm{BS}(N,N) = < a,b | a^N b = b a^N >$ and prove that their cogrowth rates are algebraic numbers.
We consider the question of determining whether a given group (especially one generated by involutions) is a right-angled Coxeter group. We describe a group invariant, the involution graph, and we characterize the involution graphs of right-angled Coxeter groups. We use this characterization to describe a process for constructing candidate right-angled Coxeter presentations for a given group or proving that one cannot exist. We provide some first applications. In addition, we provide an elementary proof of rigidity of the defining graph for a right-angled Coxeter group. We also recover a result stating that if the defining graph contains no SILs, then Aut^0(W) is a right-angled Coxeter group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا