Do you want to publish a course? Click here

Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows

102   0   0.0 ( 0 )
 Added by Qing Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Galilean invariance and considerable numerical errors in many cases owing to the error terms in the recovered macroscopic equations, the present model eliminates the error terms and therefore improves the numerical accuracy and enhances the Galilean invariance. To validate the proposed model, numerical simulation are performed. First, the test of a moving droplet in a uniform flow field is employed to verify the Galilean invariance of the improved model. Subsequently, numerical simulations are carried out for the layered two-phase flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using the improved model, the numerical accuracy can be significantly improved in comparison with the color-gradient LB model without the improvements. Finally, the capability of the improved color-gradient LB model for simulating dynamic multiphase flows at a relatively large density ratio is demonstrated via the simulation of droplet impact on a solid surface.



rate research

Read More

In this paper, we develop an efficient lattice Boltzmann (LB) model for simulating immiscible incompressible $N$-phase flows $(N geq 2)$ based on the Cahn-Hilliard phase field theory. In order to facilitate the design of LB model and reduce the calculation of the gradient term, the governing equations of the $N$-phase system are reformulated, and they satisfy the conservation of mass, momentum and the second law of thermodynamics. In the present model, $(N-1)$ LB equations are employed to capture the interface, and another LB equation is used to solve the Navier-Stokes (N-S) equations, where a new distribution function for the total force is delicately designed to reduce the calculation of the gradient term. The developed model is first validated by two classical benchmark problems, including the tests of static droplets and the spreading of a liquid lens, the simulation results show that the current LB model is accurate and efficient for simulating incompressible $N$-phase fluid flows. To further demonstrate the capability of the LB model, two numerical simulations, including dynamics of droplet collision for four fluid phases and dynamics of droplets and interfaces for five fluid phases, are performed to test the developed model. The results show that the present model can successfully handle complex interactions among $N$ ($N geq 2$) immiscible incompressible flows.
201 - Q. Li , Y. L. He , G. H. Tang 2009
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emergence for its excellent numerical stability. Compared with the existing axisymmetric thermal LB models, the present model is simpler and retains the inherent features of the standard LB method. Numerical simulations are carried out for the thermally developing laminar flows in circular ducts and the natural convection in an annulus between two coaxial vertical cylinders. The Nusselt number obtained from the simulations agrees well with the analytical solutions and/or the results reported in previous studies.
Non-Newtonian fluid flows, especially in three dimensions (3D), arise in numerous settings of interest to physics. Prior studies using the lattice Boltzmann method (LBM) of such flows have so far been limited to mainly to two dimensions and used less robust collision models. In this paper, we develop a new 3D cascaded LBM based on central moments and multiple relaxation times on a three-dimensional, nineteen velocity (D3Q19) lattice for simulation of generalized Newtonian (power law) fluid flows. The relaxation times of the second order moments are varied locally based on the local shear rate and parameterized by the consistency coefficient and the power law index of the nonlinear constitutive relation of the power law fluid. Numerical validation study of the 3D cascaded LBM for various benchmark problems, including the complex 3D non-Newtonian flow in a cubic cavity at different Reynolds numbers and power law index magnitudes encompassing shear thinning and shear thickening fluids, are presented. Furthermore, numerical stability comparisons of the proposed advanced LBM scheme against the LBM based on other collision models, such as the SRT model and MRT model based on raw moments, are made. Numerical results demonstrate the accuracy, second order grid convergence and significant improvements in stability of the 3D cascaded LBM for simulation of 3D non-Newtonian flows of power law fluids.
179 - M. Mendoza , I. Karlin , S. Succi 2013
We develop a relativistic lattice Boltzmann (LB) model, providing a more accurate description of dissipative phenomena in relativistic hydrodynamics than previously available with existing LB schemes. The procedure applies to the ultra-relativistic regime, in which the kinetic energy (temperature) far exceeds the rest mass energy, although the extension to massive particles and/or low temperatures is conceptually straightforward. In order to improve the description of dissipative effects, the Maxwell-Juettner distribution is expanded in a basis of orthonormal polynomials, so as to correctly recover the third order moment of the distribution function. In addition, a time dilatation is also applied, in order to preserve the compatibility of the scheme with a cartesian cubic lattice. To the purpose of comparing the present LB model with previous ones, the time transformation is also applied to a lattice model which recovers terms up to second order, namely up to energy-momentum tensor. The approach is validated through quantitative comparison between the second and third order schemes with BAMPS (the solution of the full relativistic Boltzmann equation), for moderately high viscosity and velocities, and also with previous LB models in the literature. Excellent agreement with BAMPS and more accurate results than previous relativistic lattice Boltzmann models are reported.
219 - Q. Li , Y. L. He , G. H. Tang 2010
This paper proposes an improved lattice Boltzmann scheme for incompressible axisymmetric flows. The scheme has the following features. First, it is still within the framework of the standard lattice Boltzmann method using the single-particle density distribution function and consistent with the philosophy of the lattice Boltzmann method. Second, the source term of the scheme is simple and contains no velocity gradient terms. Owing to this feature, the scheme is easy to implement. In addition, the singularity problem at the axis can be appropriately handled without affecting an important advantage of the lattice Boltzmann method: the easy treatment of boundary conditions. The scheme is tested by simulating Hagen-Poiseuille flow, three-dimensional Womersley flow, Wheeler benchmark problem in crystal growth, and lid-driven rotational flow in cylindrical cavities. It is found that the numerical results agree well with the analytical solutions and/or the results reported in previous studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا