No Arabic abstract
The Heusler ferromagnetic (FM) compound Co2FeAl interfaced with a high-spin orbit coupling non-magnetic (NM) layer is a promising candidate for energy efficient spin logic circuits. The circuit potential depends on the strength of angular momentum transfer across the FM/NM interface; hence, requiring low spin memory loss and high spin-mixing conductance. To highlight this issue, spin pumping and spin-transfer torque ferromagnetic resonance measurements have been performed on Co_2FeAl/beta-Ta heterostructures tailored with Cu interfacial layers. The interface tailored structure yields an enhancement of the effective spin-mixing conductance. The interface transparency and spin memory loss corrected values of the spin-mixing conductance, spin Hall angle and spin diffusion length are found to be 3.40 pm 0.01 times 10^{19} m^{-2}, 0.029 pm 0.003, and 2.3 pm 0.5 nm, respectively. Furthermore, a high current modulation of the effective damping of around 2.1 % has been achieved at an applied current density of 1 times 10^9 A/m^2 , which clearly indicates the potential of using this heterostructure for energy efficient control in spin devices
We experimentally investigate spin-orbit torque and spin pumping in Y$_3$Fe$_5$O$_{12}$(YIG)/Pt bilayers with ultrathin insertion layers at the interface. An insertion layer of Cu suppresses both spin-orbit torque and spin pumping, whereas an insertion layer of Ni$_{80}$Fe$_{20}$ (permalloy, Py) enhances them, in a quantitatively consistent manner with the reciprocity of the two spin transmission processes. However, we observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, suggesting significant spin-memory loss due to the interfacial magnetic layer. Our findings indicate that the magnetization at the YIG-metal interface strongly influences the transmission and depolarization of pure spin current.
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al$_2$O$_3$), this torque appears as an effective field, which is significantly larger than the Oersted field and sensitive to insertion of an additional layer between NiFe and Al$_2$O$_3$. Our findings point to new routes for tuning spin-orbit torques by engineering interfacial electric dipoles.
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experiment evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.
The giant spin Hall effect in magnetic heterostructures along with low spin memory loss and high interfacial spin mixing conductance are prerequisites to realize energy efficient spin torque based logic devices. We report giant spin Hall angle (SHA) of 28.67 (5.09) for W (Ta) interfaced epi- Co60Fe40/TiN structures. The spin-orbit torque switching current density (J_Crit) is as low as 1.82 (8.21) MA/cm2 in W (Ta)/Co60Fe40(t_CoFe)/TiN structures whose origin lies in the epitaxial interfaces. These structures also exhibit very low spin memory loss and high spin mixing conductance. These extraordinary values of SHA and therefore ultra-low J_Crit in semiconducting industry compatible epitaxial materials combinations open up a new direction for the realization of energy efficient spin logic devices by utilizing epitaxial interfaces.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Our findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nmthick Co.