Do you want to publish a course? Click here

Quantum bath control with nuclear spin state selectivity via pulse-adjusted dynamical decoupling

125   0   0.0 ( 0 )
 Added by Jacob Lang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips ($pi$ rotations) arranged to average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimise error-robust DD. Here we invert this paradigm: by introducing particular control errors in standard DD, namely a small constant deviation from perfect $pi$ rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarisation transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centres in diamond to efficiently polarise the $^{13}$C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.



rate research

Read More

The use of the nuclear spins surrounding electron spin qubits as quantum registers and long-lived memories opens the way to new applications in quantum information and biological sensing. Hence, there is a need for generic and robust forms of control of the nuclear registers. Although adiabatic gates are widely used in quantum information, they can become too slow to outpace decoherence. Here, we introduce a technique whereby adiabatic gates arise from the dynamical decoupling protocols that simultaneously extend coherence. We illustrate this pulse-based adiabatic control for nuclear spins around NV centers in diamond. We obtain a closed-form expression from Landau-Zener theory and show that it reliably describes the dynamics. By identifying robust Floquet states, we show that the technique enables polarisation, one-shot flips and state storage for nuclear spins. These results introduce a new control paradigm that combines dynamical decoupling with adiabatic evolution.
169 - Z. R. Gong , Wang Yao 2013
We show that dissipative quantum state preparation processes can be protected against qubit dephasing by interlacing the state preparation control with dynamical decoupling (DD) control consisting of a sequence of short $pi$-pulses. The inhomogeneous broadening can be suppressed to second order of the pulse interval, and the protection efficiency is nearly independent of the pulse sequence but determined by the average interval between pulses. The DD protection is numerically tested and found to be efficient against inhomogeneous dephasing on two exemplary dissipative state preparation schemes that use collective pumping to realize many-body singlets and linear cluster states respectively. Numerical simulation also shows that the state preparation can be efficiently protected by $pi$-pulses with completely random arrival time. Our results make possible the application of these state preparation schemes in inhomogeneously broadened systems. DD protection of state preparation against dynamical noises is also discussed using the example of Gaussian noise with a semiclasscial description.
We experimentally resolve several weakly coupled nuclear spins in diamond using a series of novelly designed dynamical decoupling controls. Some nuclear spin signals, hidden by decoherence under ordinary dynamical decoupling controls, are shifted forward in time domain to the coherence time range and thus rescued from the fate of being submerged by the noisy spin bath. In this way, more and remoter single nuclear spins are resolved. Additionally, the field of detection can be continuously tuned on sub-nanoscale. This method extends the capacity of nanoscale magnetometry and may be applicable in other systems for high-resolution noise spectroscopy.
We propose the use of non-equally spaced decoupling pulses for high-resolution selective addressing of nuclear spins by a quantum sensor. The analytical model of the basic operating principle is supplemented by detailed numerical studies that demonstrate the high degree of selectivity and the robustness against static and dynamic control field errors of this scheme. We exemplify our protocol with an NV center-based sensor to demonstrate that it enables the identification of individual nuclear spins that form part of a large spin ensemble.
128 - S. J. Balian 2015
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number of environmental degrees of freedom, it is challenging to accurately calculate decoherence times $T_2$, especially when the qubit and environment are highly correlated. Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, possess optimal working points (OWPs) which are sweet-spots for reduced decoherence in magnetic fields. Analysis of sharp variations of $T_2$ near OWPs was previously based on insensitivity to classical noise, even though hybrid qubits are situated in highly correlated quantum environments, such as the nuclear spin bath of $^{29}$Si impurities. This presented limited understanding of the decoherence mechanism and gave unreliable predictions for $T_2$. I present quantum many-body calculations of the qubit-bath dynamics, which (i) yield $T_2$ for hybrid qubits in excellent agreement with experiments in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath and (iii) expose significant differences between quantum-bath and classical-field decoherence. To achieve these, the cluster correlation expansion was adapted to include electron-nuclear state mixing. In addition, an analysis supported by experiment was carried out to characterise the nuclear spin bath for a bismuth donor as the hybrid qubit, a simple analytical formula for $T_2$ was derived with predictions in agreement with experiment, and the established method of dynamical decoupling was combined with operating near OWPs in order to maximise $T_2$. Finally, the decoherence of a $^{29}$Si spin in proximity to the hybrid qubit was studied, in order to establish the feasibility for its use as a quantum register.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا