Do you want to publish a course? Click here

Competition between $beta$-delayed proton and $beta$-delayed $gamma$ decay of the exotic $T_z$ = -2 nucleus $^{56}$Zn and fragmentation of the IAS

229   0   0.0 ( 0 )
 Added by Sonja Orrigo Dr.
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A very exotic decay mode at the proton drip-line, $beta$-delayed $gamma$-proton decay, has been observed in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed following the $beta$ decay. The fragmentation of the IAS in $^{56}$Cu has also been observed for the first time. The results were reported in a recent publication. At the time of publication the authors were puzzled by the competition between proton and $gamma$ decays from the main component of the IAS. Here we outline a possible explanation based on the nuclear structure properties of the three nuclei involved, namely $^{56}$Zn, $^{56}$Cu and $^{55}$Ni, close to the doubly magic nucleus $^{56}$Ni. From the fragmentation of the Fermi strength and the excitation energy of the two populated 0$^{+}$ states we could deduce the off-diagonal matrix element of the charge-dependent part of the Hamiltonian responsible for the mixing. These results are compared with the decay of $^{55}$Cu with one proton less than $^{56}$Zn. For completeness we summarise the results already published.



rate research

Read More

Remarkable results have been published recently on the $beta$ decay of $^{56}$Zn. In particular, the rare and exotic $beta$-delayed $gamma$-proton emission has been detected for the first time in the $fp$ shell. Here we focus the discussion on this exotic decay mode and on the observed competition between $beta$-delayed protons and $beta$-delayed $gamma$ rays from the Isobaric Analogue State.
A study of the $beta$ decay of the proton-rich $T_{z}$ = -2 nucleus $^{56}$Zn has been reported in a recent publication. A rare and exotic decay mode, $beta$-delayed $gamma$-proton decay, has been observed there for the first time in the $fp$ shell. Here we expand on some of the details of the data analysis, focussing on the charged particle spectrum.
The results of a study of the beta decays of three proton-rich nuclei with $T_z=text{-}2$, namely $^{48}$Fe, $^{52}$Ni and $^{56}$Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total $beta$-delayed proton emission branching ratios. We have measured the individual $beta$-delayed protons and $beta$-delayed $gamma$ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between $beta$-delayed protons and $gamma$ rays is observed in the de-excitation of the $T=2$ Isobaric Analogue States in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case $^{56}$Zn, where the exotic $beta$-delayed $gamma$-proton decay has been observed.
We report the observation of a very exotic decay mode at the proton drip-line, the $beta$-delayed $gamma$-proton decay, clearly seen in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed after the $beta$ decay. Here this decay mode, already observed in the $sd$-shell, is seen for the first time in the $fp$-shell. Both $gamma$ and proton decays have been taken into account in the estimation of the Fermi (F) and Gamow Teller (GT) strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.
472 - L. J. Sun , X. X. Xu , C. J. Lin 2016
The $beta$ decay of the drip-line nucleus $^{20}$Mg gives important information on resonances in $^{20}$Na, which are relevant for the astrophysical $rp$-process. A detailed $beta$ decay spectroscopic study of $^{20}$Mg was performed by a continuous-implantation method. A detection system was specially developed for charged-particle decay studies, giving improved spectroscopic information including the half-life of $^{20}$Mg, the excitation energies, the branching ratios, and the log $ft$ values for the states in $^{20}$Na populated in the $beta$ decay of $^{20}$Mg. A new proton branch was observed and the corresponding excited state in $^{20}$Na was proposed. The large isospin asymmetry for the mirror decays of $^{20}$Mg and $^{20}$O was reproduced, as well. However, no conclusive conclusion can be draw about the astrophysically interesting 2645~keV resonance in $^{20}$Na due to the limited statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا