Do you want to publish a course? Click here

Chasing the killer phonon mode for the rational design of low disorder, high mobility molecular semiconductors

268   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high mobility molecular semiconductors, state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electron phonon coupling constants are combined with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way, the long-axis sliding motion is identified as a killer phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high mobility molecular semiconductors is suggested.



rate research

Read More

540 - Q.L. Yang , H.X. Deng , S.H. Wei 2020
Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility.
86 - E. A. Henriksen 2005
We report on the temperature dependence of the mobility, $mu$, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4$times10^{12}$ cm$^{-2}$ to 3.0$times10^{12}$ cm$^{-2}$ and a peak mobility of 80,000 cm$^{2}$/Vs. Between 20 K and 50 K we observe a linear dependence $mu_{ac}^{-1} = alpha$T indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with $alpha$ being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.
Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic procrystalline solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood waterfall effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.
Cubic perovskite oxides are emerging high-mobility transparent conducting oxides (TCOs), but Ge-based TCOs had not been known until the discovery of metastable cubic SrGeO$_3$. $0.5 times 0.4 times 0.2$-mm$^3$ large single crystals of the cubic SrGeO$_3$ perovskite were successfully synthesized employing the high-pressure flux method. The phonon spectrum is determined from the IR optical reflectance and Raman-scattering analysis to evaluate the electron transport governed by optical phonon scattering. A calculated room-temperature mobility on the order of $3.9 times 10^2$ cm$^2$V$^{-1}$s$^{-1}$ is obtained, identifying cubic SrGeO$_3$ as one of the most promising TCOs. Employing classical phonon theory and a combined experimental-theoretical approach, a comprehensive analysis of the intrinsic electron mobility in the cubic perovskite semiconductors SrGeO$_3$, BaSnO$_3$, and SrTiO$_3$ is provided based on the magnitude of polarization and eigenfrequency of optically active phonons.
170 - Rui Xu , Daowei He , Yuhan Zhang 2014
Very recently, it was demonstrated that the carrier mobility of a molecular monolayer dioctylbenzothienobenzothiophene (C8-BTBT) on boron nitride can reach 10 cm2/Vs, the highest among the previously reported monolayer molecular field-effect transistors. Here we show that the high-quality single crystal of the C8-BTBT monolayer may be the key origin of the record-high carrier mobility. We discover that the C8-BTBT molecules prefer layer-by-layer growth on both hexagonal boron nitride and graphene. The flatness of these substrates substantially decreases the C8-BTBT nucleation density and enables repeatable growth of large-area single crystal of the C8-BTBT monolayer. Our experimental result indicates that only out-of-plane roughness greater than 0.6 nm of the substrates could induce disturbance in the crystal growth and consequently affect the charge transport. This information would be important in guiding the growth of high-quality epitaxy molecular film.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا