No Arabic abstract
Lead halide perovskites are causing a change of paradigm in photovoltaics. Among other peculiarities, these perovskites exhibit an atypical temperature dependence of the fundamental optical gap: It decreases in energy with decreasing temperature. So far reports ascribe such a behavior to a particularly strong electron-phonon renormalization of the band gap, neglecting completely contributions from thermal expansion effects. However, high pressure experiments performed, for instance, on the archetypal perovskite MAPbI$_3$, where MA stands for methylammonium, yield a negative pressure coefficient for the gap of the tetragonal room-temperature phase, which speaks against the assumption of a negligible gap shift due to thermal expansion. On the basis of the high pressure results, we show here that for MAPbI$_3$ the temperature-induced gap renormalization due to electron-phonon interaction can only account for about 40% of the total energy shift, thus implying thermal expansion to be the dominant term. Furthermore, this result possesses general validity, holding also for the tetragonal or cubic phase, stable at ambient conditions, of other halide perovskite counterparts.
Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency ($lesssim 50$,cm$^{-1}$) optical phonons involving motion in the lead-iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight on the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the origin of the low thermal conductivity. We apply neutron spectroscopy to show that the same acoustic phonon energy linewidth broadening (corresponding to shortened lifetimes) occurs in the fully inorganic CsPbBr$_{3}$ by comparing the results on the organic-inorganic CH$_{3}$NH$_{3}$PbCl$_{3}$. We investigate the critical dynamics near the three zone boundaries of the cubic $Pmoverline{3}m$ Brillouin zone of CsPbBr$_{3}$ and find energy and momentum broadened dynamics at momentum points where the Cs-site ($A$-site) motions contribute to the cross section. Neutron diffraction is used to confirm that both the Cs and Br sites have unusually large thermal displacements with an anisotropy that mirrors the low temperature structural distortions. The presence of an organic molecule is not necessary to disrupt the low-energy acoustic phonons at momentum transfers located away from the zone center in the lead halide perovskites and such damping may be driven by the large displacements or possibly disorder on the $A$ site.
Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$ and $alpha$-FAPbI$_3$ (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C$_{44}$. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr$_3$. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft $alpha$-FAPbI$_3$.
Perovskites have attracted much attention due to their remarkable optical properties. While it is well established that excitons dominate their optical response, the impact of higher excitonic states and formation of phonon sidebands in optical spectra still need to be better understood. Here, we perform a theoretical study on excitonic properties of monolayered hybrid organic perovskites -- supported by temperature-dependent photoluminescence measurements. Solving the Wannier equation, we obtain microscopic access to the Rydberg-like series of excitonic states including their wavefunctions and binding energies. Exploiting the generalized Elliot formula, we calculate the photoluminescence spectra demonstrating a pronounced contribution of a phonon sideband for temperatures up to 50 K -- in agreement with experimental measurements. Finally, we predict temperature-dependent linewidths of the three energetically lowest excitonic transitions and identify the underlying phonon-driven scattering processes.
The electronic structure evolution of deficient halide perovskites with a general formula $(A,A)_{1+x}M_{1-x}X_{3-x}$ was investigated using the density functional theory. The focus is placed on characterization of changes in the band gap, band alignment, effective mass, and optical properties of deficient perovskites at various concentrations of defects. We uncover unusual electronic properties of the defect corresponding to a $M!-!X$ vacancy filled with an $A$ cation. This defect repels electrons and holes producing no trap states and, in moderate quantities ($xle0.1$), does not hinder charge transport properties of the material. This behavior is rationalized using a confinement model and provides an additional insight to the defect tolerance of halide perovskites.