Do you want to publish a course? Click here

Microscopic picture of electron-phonon interaction in two-dimensional halide perovskites

79   0   0.0 ( 0 )
 Added by Raul Perea Causin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perovskites have attracted much attention due to their remarkable optical properties. While it is well established that excitons dominate their optical response, the impact of higher excitonic states and formation of phonon sidebands in optical spectra still need to be better understood. Here, we perform a theoretical study on excitonic properties of monolayered hybrid organic perovskites -- supported by temperature-dependent photoluminescence measurements. Solving the Wannier equation, we obtain microscopic access to the Rydberg-like series of excitonic states including their wavefunctions and binding energies. Exploiting the generalized Elliot formula, we calculate the photoluminescence spectra demonstrating a pronounced contribution of a phonon sideband for temperatures up to 50 K -- in agreement with experimental measurements. Finally, we predict temperature-dependent linewidths of the three energetically lowest excitonic transitions and identify the underlying phonon-driven scattering processes.



rate research

Read More

We report on the exciton formation and relaxation dynamics following photocarrier injection in a single-layer two-dimensional lead-iodide perovskite. We probe the time evolution of four distinct exciton resonances by means of time-resolved photoluminescence and transient absorption spectroscopies, and find that at 5,K a subset of excitons form on a $lesssim$ 1-ps timescale, and that these relax subsequently to lower-energy excitons on $sim$ 5--10,ps with a marked temperature dependence over $<$ 100,K. We implement a mode projection analysis that determines the relative contribution of all observed phonons with frequency $leq$50,cm$^{-1}$ to inter-exciton nonadiabatic coupling, which in turn determines the rate of exciton relaxation. This analysis ranks the relative contribution of the phonons that participate in polaronic lattice distortions to the exciton inter-conversion dynamics and thus establishes their role in the nonadiabatic mixing of exciton states, and this in the exciton relaxation rate.
Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency ($lesssim 50$,cm$^{-1}$) optical phonons involving motion in the lead-iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight on the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.
Lead halide perovskites are causing a change of paradigm in photovoltaics. Among other peculiarities, these perovskites exhibit an atypical temperature dependence of the fundamental optical gap: It decreases in energy with decreasing temperature. So far reports ascribe such a behavior to a particularly strong electron-phonon renormalization of the band gap, neglecting completely contributions from thermal expansion effects. However, high pressure experiments performed, for instance, on the archetypal perovskite MAPbI$_3$, where MA stands for methylammonium, yield a negative pressure coefficient for the gap of the tetragonal room-temperature phase, which speaks against the assumption of a negligible gap shift due to thermal expansion. On the basis of the high pressure results, we show here that for MAPbI$_3$ the temperature-induced gap renormalization due to electron-phonon interaction can only account for about 40% of the total energy shift, thus implying thermal expansion to be the dominant term. Furthermore, this result possesses general validity, holding also for the tetragonal or cubic phase, stable at ambient conditions, of other halide perovskite counterparts.
While polarons --- charges bound to a lattice deformation induced by electron-phonon coupling --- are primary photoexcitations at room temperature in bulk metal-halide hybrid organic-inorganic perovskites (HOIP), excitons --- Coulomb-bound el-ectron-hole pairs --- are the stable quasi-particles in their two-dimensional (2D) analogues. Here we address the fundamental question: are polaronic effects consequential for excitons in 2D-HIOPs? Based on our recent work, we argue that polaronic effects are manifested intrinsically in the exciton spectral structure, which is comprised of multiple non-degenerate resonances with constant inter-peak energy spacing. We highlight our own measurements of population and dephasing dynamics that point to the apparently deterministic role of polaronic effects in excitonic properties. We contend that an interplay of long-range and short-range exciton-lattice couplings give rise to exciton polarons, a character that fundamentally establishes their effective mass and radius, and consequently, their quantum dynamics. Finally, we highlight opportunities for the community to develop the rigorous description of exciton polarons in 2D-HIOPs to advance their fundamental understanding as model systems for condensed-phase materials in which lattice-mediated correlations are fundamental to their physical properties.
Whereas their photophysics exhibits an intricate interplay of carriers with the lattice, most reports have so far relied on single compound studies. With the exception of variations of the organic spacer cations, the effect of constituent substitution on the photophysics and the nature of emitting species, in particular, has remained largely under-explored. Here PEA$_2$PbBr$_4$, PEA$_2$PbI$_4$, and PEA$_2$SnI$_4$ are studied through a variety of optical spectroscopy techniques to reveal a complex set of excitonic transitions at low temperature. We attribute the emergence of weak high energy features to a vibronic progression breaking Kashas rule and highlight that the responsible phonons cannot be accessed through simple Raman spectroscopy. Bright peaks at lower energy are due to two distinct excitons, of which the upper is a convolution of a bright exciton and a localised state, whereas the lower is attributed to shallow defects. Our study offers deeper insights into the photophysics of two-dimensional perovskites through compositional substitution and highlights critical limits to the communities current understanding of the photophysics of these compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا