Do you want to publish a course? Click here

Action-Centered Information Retrieval

194   0   0.0 ( 0 )
 Added by Marcello Balduccini
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Information Retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events possibly implicit, uncertain effects and side-effects. We begin by analyzing the problem, then propose an action language based formalization, and finally automate the corresponding IR task using Answer Set Programming.



rate research

Read More

74 - Michael J. Kurtz 2018
What is intelligent information retrieval? Essentially this is asking what is intelligence, in this article I will attempt to show some of the aspects of human intelligence, as related to information retrieval. I will do this by the device of a semi-imaginary Oracle. Every Observatory has an oracle, someone who is a distinguished scientist, has great administrative responsibilities, acts as mentor to a number of less senior people, and as trusted advisor to even the most accomplished scientists, and knows essentially everyone in the field. In an appendix I will present a brief summary of the Statistical Factor Space method for text indexing and retrieval, and indicate how it will be used in the Astrophysics Data System Abstract Service. 2018 Keywords: Personal Digital Assistant; Supervised Topic Models
Skeleton-based action recognition has attracted research attentions in recent years. One common drawback in currently popular skeleton-based human action recognition methods is that the sparse skeleton information alone is not sufficient to fully characterize human motion. This limitation makes several existing methods incapable of correctly classifying action categories which exhibit only subtle motion differences. In this paper, we propose a novel framework for employing human pose skeleton and joint-centered light-weight information jointly in a two-stream graph convolutional network, namely, JOLO-GCN. Specifically, we use Joint-aligned optical Flow Patches (JFP) to capture the local subtle motion around each joint as the pivotal joint-centered visual information. Compared to the pure skeleton-based baseline, this hybrid scheme effectively boosts performance, while keeping the computational and memory overheads low. Experiments on the NTU RGB+D, NTU RGB+D 120, and the Kinetics-Skeleton dataset demonstrate clear accuracy improvements attained by the proposed method over the state-of-the-art skeleton-based methods.
Inspired by findings of sensorimotor coupling in humans and animals, there has recently been a growing interest in the interaction between action and perception in robotic systems [Bogh et al., 2016]. Here we consider perception and action as two serial information channels with limited information-processing capacity. We follow [Genewein et al., 2015] and formulate a constrained optimization problem that maximizes utility under limited information-processing capacity in the two channels. As a solution we obtain an optimal perceptual channel and an optimal action channel that are coupled such that perceptual information is optimized with respect to downstream processing in the action module. The main novelty of this study is that we propose an online optimization procedure to find bounded-optimal perception and action channels in parameterized serial perception-action systems. In particular, we implement the perceptual channel as a multi-layer neural network and the action channel as a multinomial distribution. We illustrate our method in a NAO robot simulator with a simplified cup lifting task.
In many real-world scenarios, a team of agents coordinate with each other to compete against an opponent. The challenge of solving this type of game is that the teams joint action space grows exponentially with the number of agents, which results in the inefficiency of the existing algorithms, e.g., Counterfactual Regret Minimization (CFR). To address this problem, we propose a new framework of CFR: CFR-MIX. Firstly, we propose a new strategy representation that represents a joint action strategy using individual strategies of all agents and a consistency relationship to maintain the cooperation between agents. To compute the equilibrium with individual strategies under the CFR framework, we transform the consistency relationship between strategies to the consistency relationship between the cumulative regret values. Furthermore, we propose a novel decomposition method over cumulative regret values to guarantee the consistency relationship between the cumulative regret values. Finally, we introduce our new algorithm CFR-MIX which employs a mixing layer to estimate cumulative regret values of joint actions as a non-linear combination of cumulative regret values of individual actions. Experimental results show that CFR-MIX outperforms existing algorithms on various games significantly.
113 - Stefano Marchesin 2018
The goal of case-based retrieval is to assist physicians in the clinical decision making process, by finding relevant medical literature in large archives. We propose a research that aims at improving the effectiveness of case-based retrieval systems through the use of automatically created document-level semantic networks. The proposed research tackles different aspects of information systems and leverages the recent advancements in information extraction and relational learning to revisit and advance the core ideas of concept-centered hypertext models. We propose a two-step methodology that in the first step addresses the automatic creation of document-level semantic networks, then in the second step it designs methods that exploit such document representations to retrieve relevant cases from medical literature. For the automatic creation of documents semantic networks, we design a combination of information extraction techniques and relational learning models. Mining concepts and relations from text, information extraction techniques represent the core of the document-level semantic networks building process. On the other hand, relational learning models have the task of enriching the graph with additional connections that have not been detected by information extraction algorithms and strengthening the confidence score of extracted relations. For the retrieval of relevant medical literature, we investigate methods that are capable of comparing the documents semantic networks in terms of structure and semantics. The automatic extraction of semantic relations from documents, and their centrality in the creation of the documents semantic networks, represent our attempt to go one step further than previous graph-based approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا