Do you want to publish a course? Click here

Viscosity measurements in pulsed magnetic fields by using a quartz-crystal microbalance

99   0   0.0 ( 0 )
 Added by Toshihiro Nomura
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Viscosity measurements in combination with pulsed magnetic fields are developed by use of a quartz-crystal microbalance (QCM). When the QCM is immersed in liquid, the resonant frequency, $f_0$, and the quality factor, $Q$, of the QCM change depending on $(rhoeta)^{0.5}$, where $rho$ is the mass density and $eta$ the viscosity. During the magnetic-field pulse, $f_0$ and $Q$ of the QCM are simultaneously measured by a ringdown technique. The typical resolution of $(rhoeta)^{0.5}$ is 0.5 %. As a benchmark, the viscosity of liquid oxygen is measured up to 55 T.



rate research

Read More

We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fibre strain gauges based on Fibre Bragg Gratings are used to measure the strain in small (~1mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of $10^{-7}$ with a full bandwidth of 47kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.
Current wafer-scale fabrication methods for graphene-based electronics and sensors involve the transfer of single-layer graphene by a support polymer. This often leaves some polymer residue on the graphene, which can strongly impact its electronic, thermal, and mechanical resonance properties. To assess the cleanliness of graphene fabrication methods, it is thus of considerable interest to quantify the amount of contamination on top of the graphene. Here, we present a methodology for direct measurement of the mass of the graphene sheet using quartz crystal microbalances (QCM). By monitoring the QCM resonance frequency during removal of graphene in an oxygen plasma, the total mass of the graphene and contamination is determined with sub-graphene-monolayer accuracy. Since the etch-rate of the contamination is higher than that of graphene, quantitative measurements of the mass of contaminants below, on top, and between graphene layers are obtained. We find that polymer-based dry transfer methods can increase the mass of a graphene sheet by a factor of 10. The presented mass measurement method is conceptually straightforward to interpret and can be used for standardized testing of graphene transfer procedures in order to improve the quality of graphene devices in future applications.
A new calorimeter for measurements of the AC heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to mu 0H = 50 Tesla, but it could be extended to higher fields. For these measurements we used carefully calibrated bare chip Cernoxtextregistered and RuO2 thermometers, and we present a comparison of their performance. The monotonic temperature and magnetic field dependences of the magneto resistance of RuO2 allow us to carry on precise thermometry with a precision as good as pm 1mK at T = 2 K. To test the performance of our calorimeter, AC heat capacity and magnetocaloric effect for the spin-dimer compound Sr3Cr2O8 and the triangular lattice antiferromagnet RbFe(MoO4)2 are presented.
133 - S. Schmidt , B. Wolf , M. Sieling 1998
We present ESR results for 35-134GHz in the antiferromagnet CsCuCl3 at T=1.5K. The external field is applied perpendicular to the hexagonal c-axis. With our pulsed field facility we reach 50T an unprecedented field for low temperature ESR. We observe strong resonances up to fields close to the ferromagnetic region of ~30T. These results are discussed in a model for antiferromagnetic modes in a two-dimensional frustrated triangular spin system.
Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field- sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا