Do you want to publish a course? Click here

A Spatial Bayesian Semiparametric Mixture Model for Positive Definite Matrices with Applications to Diffusion Tensor Imaging

70   0   0.0 ( 0 )
 Added by Zhou Lan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique used to characterize microstructural changes in the brain. DTI studies quantify the diffusion of water molecules in a voxel using an estimated 3x3 symmetric positive definite diffusion tensor matrix. Statistical analysis of DTI data is challenging because the data are positive definite matrices. Matrix-variate information is often summarized by a univariate quantity, such as the fractional anisotropy (FA), leading to a loss of information. Furthermore, DTI analyses often ignore the spatial association of neighboring voxels, which can lead to imprecise estimates. Although the spatial modeling literature is abundant, modeling spatially dependent positive definite matrices is challenging. To mitigate these issues, we propose a matrix-variate Bayesian semiparametric mixture model, where the positive definite matrices are distributed as a mixture of inverse Wishart distributions with the spatial dependence captured by a Markov model for the mixture component labels. Conjugacy and the double Metropolis-Hastings algorithm result in fast and elegant Bayesian computing. Our simulation study shows that the proposed method is more powerful than non-spatial methods. We also apply the proposed method to investigate the effect of cocaine use on brain structure. The contribution of our work is to provide a novel statistical inference tool for DTI analysis by extending spatial statistics to matrix-variate data.



rate research

Read More

Geostatistical modeling for continuous point-referenced data has been extensively applied to neuroimaging because it produces efficient and valid statistical inference. However, diffusion tensor imaging (DTI), a neuroimaging characterizing the brain structure produces a positive definite (p.d.) matrix for each voxel. Current geostatistical modeling has not been extended to p.d. matrices because introducing spatial dependence among positive definite matrices properly is challenging. In this paper, we use the spatial Wishart process, a spatial stochastic process (random field) where each p.d. matrix-variate marginally follows a Wishart distribution, and spatial dependence between random matrices is induced by latent Gaussian processes. This process is valid on an uncountable collection of spatial locations and is almost surely continuous, leading to a reasonable means of modeling spatial dependence. Motivated by a DTI dataset of cocaine users, we propose a spatial matrix-variate regression model based on the spatial Wishart process. A problematic issue is that the spatial Wishart process has no closed-form density function. Hence, we propose approximation methods to obtain a feasible working model. A local likelihood approximation method is also applied to achieve fast computation. The simulation studies and real data analysis demonstrate that the working model produces reliable inference and improved performance compared to other methods.
114 - Zhou Lan , Brian J Reich 2019
Diffusion MRI is a neuroimaging technique measuring the anatomical structure of tissues. Using diffusion MRI to construct the connections of tissues, known as fiber tracking, is one of the most important uses of diffusion MRI. Many techniques are available recently but few properly quantify statistical uncertainties. In this paper, we propose a directed acyclic graph auto-regressive model of positive definite matrices and apply a probabilistic fiber tracking algorithm. We use both real data analysis and numerical studies to demonstrate our proposal.
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula model is utilized to capture the dependence structure of $F_{true}$. As a result, a Bayesian multivariate normality test is developed by combining the relative belief ratio and the Energy distance. Several interesting theoretical results of the approach are derived. Finally, through several simulated examples and a real data set, the proposed approach reveals excellent performance.
The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE) is a multi-stage randomized trial that aimed to provide longitudinal data for constructing treatment strategies to improve patients engagement in therapy. However, the high rate of noncompliance and lack of analytic tools to account for noncompliance have impeded researchers from using the data to achieve the main goal of the trial. We overcome this issue by defining our target parameter as the mean outcome under different treatment strategies for given potential compliance strata and propose a Bayesian semiparametric model to estimate this quantity. While it adds substantial complexities to the analysis, one important feature of our work is that we consider partial rather than binary compliance classes which is more relevant in longitudinal studies. We assess the performance of our method through comprehensive simulation studies. We illustrate its application on the ENGAGE study and demonstrate that the optimal treatment strategy depends on compliance strata.
We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence ruling out models based on Poisson processes. The proposed class of FRActional Probit (FRAP) models is based on thresholding of a latent process consisting of an additive expansion of a smooth Gaussian process with a fractional Brownian motion. We develop a Bayesian approach to inference using Markov chain Monte Carlo, and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data, in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in Supplementary Materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا