Do you want to publish a course? Click here

Geostatistical Modeling of Positive Definite Matrices: An Application to Diffusion Tensor Imaging

330   0   0.0 ( 0 )
 Added by Zhou Lan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Geostatistical modeling for continuous point-referenced data has been extensively applied to neuroimaging because it produces efficient and valid statistical inference. However, diffusion tensor imaging (DTI), a neuroimaging characterizing the brain structure produces a positive definite (p.d.) matrix for each voxel. Current geostatistical modeling has not been extended to p.d. matrices because introducing spatial dependence among positive definite matrices properly is challenging. In this paper, we use the spatial Wishart process, a spatial stochastic process (random field) where each p.d. matrix-variate marginally follows a Wishart distribution, and spatial dependence between random matrices is induced by latent Gaussian processes. This process is valid on an uncountable collection of spatial locations and is almost surely continuous, leading to a reasonable means of modeling spatial dependence. Motivated by a DTI dataset of cocaine users, we propose a spatial matrix-variate regression model based on the spatial Wishart process. A problematic issue is that the spatial Wishart process has no closed-form density function. Hence, we propose approximation methods to obtain a feasible working model. A local likelihood approximation method is also applied to achieve fast computation. The simulation studies and real data analysis demonstrate that the working model produces reliable inference and improved performance compared to other methods.



rate research

Read More

Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique used to characterize microstructural changes in the brain. DTI studies quantify the diffusion of water molecules in a voxel using an estimated 3x3 symmetric positive definite diffusion tensor matrix. Statistical analysis of DTI data is challenging because the data are positive definite matrices. Matrix-variate information is often summarized by a univariate quantity, such as the fractional anisotropy (FA), leading to a loss of information. Furthermore, DTI analyses often ignore the spatial association of neighboring voxels, which can lead to imprecise estimates. Although the spatial modeling literature is abundant, modeling spatially dependent positive definite matrices is challenging. To mitigate these issues, we propose a matrix-variate Bayesian semiparametric mixture model, where the positive definite matrices are distributed as a mixture of inverse Wishart distributions with the spatial dependence captured by a Markov model for the mixture component labels. Conjugacy and the double Metropolis-Hastings algorithm result in fast and elegant Bayesian computing. Our simulation study shows that the proposed method is more powerful than non-spatial methods. We also apply the proposed method to investigate the effect of cocaine use on brain structure. The contribution of our work is to provide a novel statistical inference tool for DTI analysis by extending spatial statistics to matrix-variate data.
114 - Zhou Lan , Brian J Reich 2019
Diffusion MRI is a neuroimaging technique measuring the anatomical structure of tissues. Using diffusion MRI to construct the connections of tissues, known as fiber tracking, is one of the most important uses of diffusion MRI. Many techniques are available recently but few properly quantify statistical uncertainties. In this paper, we propose a directed acyclic graph auto-regressive model of positive definite matrices and apply a probabilistic fiber tracking algorithm. We use both real data analysis and numerical studies to demonstrate our proposal.
In Functional Data Analysis, data are commonly assumed to be smooth functions on a fixed interval of the real line. In this work, we introduce a comprehensive framework for the analysis of functional data, whose domain is a two-dimensional manifold and the domain itself is subject to variability from sample to sample. We formulate a statistical model for such data, here called Functions on Surfaces, which enables a joint representation of the geometric and functional aspects, and propose an associated estimation framework. We assess the validity of the framework by performing a simulation study and we finally apply it to the analysis of neuroimaging data of cortical thickness, acquired from the brains of different subjects, and thus lying on domains with different geometries.
We propose a multivariate functional responses low rank regression model with possible high dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve basis, we reconstruct the basis coefficients as a matrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimaging data to predict cortical surface motor task-evoked functional magnetic resonance imaging signals using various clinical covariates to illustrate the usefulness of our results.
In this paper, we introduce properly-invariant diagonality measures of Hermitian positive-definite matrices. These diagonality measures are defined as distances or divergences between a given positive-definite matrix and its diagonal part. We then give closed-form expressions of these diagonality measures and discuss their invariance properties. The diagonality measure based on the log-determinant $alpha$-divergence is general enough as it includes a diagonality criterion used by the signal processing community as a special case. These diagonality measures are then used to formulate minimization problems for finding the approximate joint diagonalizer of a given set of Hermitian positive-definite matrices. Numerical computations based on a modified Newton method are presented and commented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا