Do you want to publish a course? Click here

A new approach to a network of congruences on an inverse semigroup

47   0   0.0 ( 0 )
 Added by Ying-Ying Feng
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper enriches the list of known properties of congruence sequences starting from the universal relation and successively performing the operators lower $k$ and lower $t$. Two series of inverse semigroups, namely $ker{alpha_n}$-is-Clifford semigroups and $beta_n$-is-over-$E$-unitary semigroups, are investigated. Two congruences, namely $alpha_{n+2}$ and $beta_{n+2}$, are found to be the least $ker{alpha_n}$-is-Clifford and least $beta_n$-is-over-$E$-unitary congruences on $S$, respectively. A new system of implications is established for the quasivarieties of inverse semigroups induced by the min network.



rate research

Read More

132 - Luis Oliveira 2012
In this paper we present a new embedding of a semigroup into a semiband (idempotent-generated semigroup) of depth 4 (every element is the product of 4 idempotents) using a semidirect product construction. Our embedding does not assume that S is a monoid (although it assumes a weaker condition), and works also for (non-monoid) regular semigroups. In fact, this semidirect product is particularly useful for regular semigroups since we can defined another embedding for these semigroups into a smaller semiband of depth 2. We shall then compare our construction with other known embeddings, and we shall see that some properties of S are preserved by our embedding.
The enhanced power graph $mathcal P_e(S)$ of a semigroup $S$ is a simple graph whose vertex set is $S$ and two vertices $x,y in S$ are adjacent if and only if $x, y in langle z rangle$ for some $z in S$, where $langle z rangle$ is the subsemigroup generated by $z$. In this paper, first we described the structure of $mathcal P_e(S)$ for an arbitrary semigroup $S$. Consequently, we discussed the connectedness of $mathcal P_e(S)$. Further, we characterized the semigroup $S$ such that $mathcal P_e(S)$ is complete, bipartite, regular, tree and null graph, respectively. Also, we have investigated the planarity together with the minimum degree and independence number of $mathcal P_e(S)$. The chromatic number of a spanning subgraph, viz. the cyclic graph, of $mathcal P_e(S)$ is proved to be countable. At the final part of this paper, we construct an example of a semigroup $S$ such that the chromatic number of $mathcal P_e(S)$ need not be countable.
The structure of the automorphism group of the sandwich semigroup IS_n is described in terms of standard group constructions.
In this paper we introduce the Schutzenberger category $mathbb D(S)$ of a semigroup $S$. It stands in relation to the Karoubi envelope (or Cauchy completion) of $S$ in the same way that Schutzenberger groups do to maximal subgroups and that the local divisors of Diekert do to the local monoids $eSe$ of $S$ with $ein E(S)$. In particular, the objects of $mathbb D(S)$ are the elements of $S$, two objects of $mathbb D(S)$ are isomorphic if and only if the corresponding semigroup elements are $mathscr D$-equivalent, the endomorphism monoid at $s$ is the local divisor in the sense of Diekert and the automorphism group at $s$ is the Schutzenberger group of the $mathscr H$-class of $S$. This makes transparent many well-known properties of Greens relations. The paper also establishes a number of technical results about the Karoubi envelope and Schutzenberger category that were used by the authors in a companion paper on syntactic invariants of flow equivalence of symbolic dynamical systems.
The cyclic graph $Gamma(S)$ of a semigroup $S$ is the simple graph whose vertex set is $S$ and two vertices $x, y$ are adjacent if the subsemigroup generated by $x$ and $y$ is monogenic. In this paper, we classify the semigroup $S$ such that whose cyclic graph $Gamma(S)$ is complete, bipartite, tree, regular and a null graph, respectively. Further, we determine the clique number of $Gamma(S)$ for an arbitrary semigroup $S$. We obtain the independence number of $Gamma(S)$ if $S$ is a finite monogenic semigroup. At the final part of this paper, we give bounds for independence number of $Gamma(S)$ if $S$ is a semigroup of bounded exponent and we also characterize the semigroups attaining the bounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا