Do you want to publish a course? Click here

Molecular ordering in lipid monolayers: an atomistic simulation

60   0   0.0 ( 0 )
 Added by Enrique Velasco Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on atomistic simulations of DPPC lipid monolayers using the CHARMM36 lipid force field and four-point OPC water model. The entire two-phase region where domains of the `liquid-condensed (LC) phase coexist with domains of the `liquid-expanded (LE) phase has been explored. The simulations are long enough that the complete phase-transition stage, with two domains coexisting in the monolayer, is reached in all cases. Also, system sizes used are larger than in previous works. As expected, domains of the minority phase are elongated, emphasizing the importance of anisotropic van der Waals and/or electrostatic dipolar interactions in the monolayer plane. The molecular structure is quantified in terms of distribution functions for the hydrocarbon chains and the PN dipoles. In contrast to previous work, where average distributions are calculated, distributions are here extracted for each of the coexisting phases by first identifying lipid molecules that belong to either LC or LE regions. The three-dimensional distributions show that the average tilt angle of the chains with respect to the normal outward direction is $(39.0pm 0.1)^{circ}$ in the LC phase. % and $(48.1pm 0.5)^{circ}$ in the LC phase. In the case of the PN dipoles the distributions indicate a tilt angle of $(110.8pm 0.5)^{circ}$ in the LC phase and $(112.5pm 0.5)^{circ}$ in the LE phase. These results are quantitatively different from previous works, which indicated a smaller normal component of the PN dipole. Also, the distributions of the monolayer-projected chains and PN dipoles have been calculated. Chain distributions peak along a particular direction in the LC domains, while they are uniform in the LE phase. Long-range ordering associated with the projected PN dipoles is absent in both phases.



rate research

Read More

53 - E. Velasco , L. Mederos 2019
We formulate a simple effective model to describe molecular interactions in a lipid monolayer. The model represents lipid molecules in terms of two-dimensional anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating from lipid chain interaction, and dipolar forces between the dipole groups of the molecular heads. Thermodynamic and phase behaviour properties of the model are explored using density-functional theory. Interfacial properties, such as the line tension and the structure of the region between ordered and disordered coexisting regions, are also calculated. The line tension turns out to be highly anisotropic, mainly as a result of the lipid chain tilt, and to a lesser extent of dipolar interactions perpendicular to the monolayer. The role of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with computer simulation results for lipid monolayers.
We use a coarse-grained molecular dynamics simulation to investigate the interaction between neutral or charged nanoparticles (NPs) and a vesicle consisting of neutral and negatively charged lipids. We focus on the interaction strengths of hydrophilic and hydrophobic attraction and electrostatic interactions between a lipid molecule and an NP. A neutral NP passes through the lipid membrane when the hydrophobic interaction is sufficiently strong. As the valence of the positively charged NP increases, the membrane permeation speed of the NP is increased compared with the neutral NP and charged lipids are accumulated around the charged NP. A charged NP with a high valence passes through the lipid membrane via a transient channel formed by charged lipids or transport-like endocytosis. These permeation processes can be classified based on analyses of the density correlation function. When the non-electrostatic interaction parameters are large enough, a negatively charged NP can be adsorbed on the membrane and a neutral lipid-rich region is formed directly below the NP. The NP is spontaneously incorporated into the vesicle under various conditions and the incorporation is mediated by the membrane curvature. We reveal how the NPs behavior depends on the NP valence, size, and the non-electrostatic interaction parameters.
Grazing Incidence X-ray Diffraction (GIXD) studies of monolayers of biomolecules at the air-water interface give quantitative information of in-plane packing, coherence lengths of the ordered diffracting crystalline domains and the orientation of hydrocarbon chains. Rheo-GIXD measurements revel quantitative changes in the monolayer under shear. Here we report GIXD studies of monolayers of Alamethicin peptide, DPPC lipid and their mixtures at the air-water interface under the application of steady shear stresses. The Alamethicin monolayer and the mixed monolayer show flow jamming transition. On the other hand, pure DPPC monolayer under the constant stress flows steadily with a notable enhancement of area/molecule, coherence length, and the tilt angle with increasing stress, suggesting fusion of nanocrystallites during flow. The DPPC-Alamethicin mixed monolayer shows no significant change in the area/DPPC molecule or in the DPPC chain tilt but the coherence length of both phases (DPPC and Alamethicin) increases suggesting that the crystallites of individual phases are merging to bigger size promoting more separation of phases in the system during flow. Our results show that Rheo-GIXD has the potential to explore in-situ molecular structural changes under rheological conditions for a diverse range of confined biomolecules at the interfaces.
We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. This technique allows to discriminate the onset of mobility at different length scales for the different molecular components, as e.g.@ the lipid acyl-chains and the hydration water in between the membrane stacks, respectively, and provides a benchmark test regarding the feasibility of neutron backscattering investigations on these sample systems. We discuss freezing of the lipid acyl-chains, as observed by this technique, and observe a second freezing transition which we attribute to the hydration water.
We report vibrational sum frequency generation spectra from supported lipid bilayers in which the OH and the CH stretching signals are probed at different salt concentrations. Atomistic simulations show a negligible impact of salt on the OH stretching spectra, indicating the observed SFG intensity changes are due to chi(3) and potential dependent contributions. These are further analyzed in the contact of exact-zero reference states. Further experiments and simulations identify specific hydrogen bonding interactions between interfacial water molecules at the PC head group of the zwitterionic DMPC lipids at 3200 wavenumbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا