Do you want to publish a course? Click here

Grazing incidence x-ray diffraction studies of lipid-peptide mixed monolayers during shear flow

67   0   0.0 ( 0 )
 Added by Pradip Kumar Bera
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Grazing Incidence X-ray Diffraction (GIXD) studies of monolayers of biomolecules at the air-water interface give quantitative information of in-plane packing, coherence lengths of the ordered diffracting crystalline domains and the orientation of hydrocarbon chains. Rheo-GIXD measurements revel quantitative changes in the monolayer under shear. Here we report GIXD studies of monolayers of Alamethicin peptide, DPPC lipid and their mixtures at the air-water interface under the application of steady shear stresses. The Alamethicin monolayer and the mixed monolayer show flow jamming transition. On the other hand, pure DPPC monolayer under the constant stress flows steadily with a notable enhancement of area/molecule, coherence length, and the tilt angle with increasing stress, suggesting fusion of nanocrystallites during flow. The DPPC-Alamethicin mixed monolayer shows no significant change in the area/DPPC molecule or in the DPPC chain tilt but the coherence length of both phases (DPPC and Alamethicin) increases suggesting that the crystallites of individual phases are merging to bigger size promoting more separation of phases in the system during flow. Our results show that Rheo-GIXD has the potential to explore in-situ molecular structural changes under rheological conditions for a diverse range of confined biomolecules at the interfaces.



rate research

Read More

94 - C. Fradin , A. Braslau , D. Luzet 1997
Grazing incidence x-ray surface scattering has been used to investigate liquid surfaces down to the molecular scale. The free surface of water is well described by the capillary wave model (<z(q)z(-q)> ~ q-2 spectrum) up to wavevectors > 10^8 m^-1. At larger wavevectors near-surface acoustic waves must be taken into account. When the interface is bounded by a surfactant monolayer, it exhibits a bending stiffness and the bending rigidity modulus can be measured. However, bending effects generally cannot be described using the Helfrich Hamiltonian and the characteristic exponent in the roughness power spectrum can smaller than 4. Finally, upon compression, tethered monolayers formed on a subphase containing divalent ions are shown to buckle in the third dimension with a characteristic wavelength on the order of 10^8 m^-1.
We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in local epitaxy whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. The structural evolution is discussed in relation with the magnetic properties of the Fe clusters.
We present an investigation of the near-surface tetragonal phase transition in SrTiO3, using the complementary techniques of beta-detected nuclear magnetic resonance and grazing-incidence X-ray diffraction. The results show a clear depth dependence of the phase transition on scales of a few microns. The measurements support a model in which there are tetragonal domains forming in the sample at temperatures much higher than the bulk phase transition temperature. Moreover, we find that these domains tend to form at higher temperatures preferentially near the free surface of the crystal. The details of the tetragonal domain formation and their depth/lateral dependencies are discussed.
53 - E. Velasco , L. Mederos 2019
We formulate a simple effective model to describe molecular interactions in a lipid monolayer. The model represents lipid molecules in terms of two-dimensional anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating from lipid chain interaction, and dipolar forces between the dipole groups of the molecular heads. Thermodynamic and phase behaviour properties of the model are explored using density-functional theory. Interfacial properties, such as the line tension and the structure of the region between ordered and disordered coexisting regions, are also calculated. The line tension turns out to be highly anisotropic, mainly as a result of the lipid chain tilt, and to a lesser extent of dipolar interactions perpendicular to the monolayer. The role of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with computer simulation results for lipid monolayers.
Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The projectile-surface potential is obtained from an accurate DFT calculation, which includes polarization and surface relaxation. For the description of the collision process we employ the surface eikonal approximation, which takes into account quantum interference between different projectile paths. The dependence of projectile spectra on the parallel and perpendicular incident energies is experimentally and theoretically analyzed, determining the range of applicability of the proposed model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا