Do you want to publish a course? Click here

Odometers of Divisible Sandpile Models: Scaling Limits, iDLA and Obstacle Problems. A Survey

91   0   0.0 ( 0 )
 Added by Wioletta Ruszel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The divisible sandpile model is a fixed-energy continuous counterpart of the Abelian sandpile model. We start with a random initial configuration and redistribute mass deterministically. Under certain conditions the sandpile will stabilize. The associated odometer function describes the amount of mass emitted from each vertex during stabilization. In this survey we describe recent scaling limit results of the odometer function depending on different initial configurations and redistribution rules. Moreover we review connections to the obstacle problem from potential theory, including the connection between odometers and limiting shapes of growth models such as iDLA. Finally we state some open problems.

rate research

Read More

In this paper we complete the investigation of scaling limits of the odometer in divisible sandpiles on $d$-dimensional tori generalising the works Chiarini et al. (2018), Cipriani et al. (2017, 2018). Relaxing the assumption of independence of the weights of the divisible sandpile, we generate generalised Gaussian fields in the limit by specifying the Fourier multiplier of their covariance kernel. In particular, using a Fourier multiplier approach, we can recover fractional Gaussian fields of the form $(-Delta)^{-(1+s)} W$ for $s>0$ and $W$ a spatial white noise on the $d$-dimensional unit torus.
This work deals with the divisible sandpile model when an initial configuration sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015) and Cipriani et al. (2016) we determine sufficient conditions for stabilization and non-stabilization on infinite graphs. We determine furthermore that the scaling limit of the odometer on the torus is an $alpha$-stable random distribution.
We consider various asymptotic scaling limits $Ntoinfty$ for the $2N$ complex eigenvalues of non-Hermitian random matrices in the symmetry class of the symplectic Ginibre ensemble. These are known to be integrable, forming Pfaffian point processes, and we obtain limiting expressions for the corresponding kernel for different potentials. The first part is devoted to the symplectic Ginibre ensemble with a Gaussian potential. We obtain the asymptotic at the edge of the spectrum in the vicinity of the real line. The unifying form of the kernel allows us to make contact with the bulk scaling along the real line and with the edge scaling away from the real line, where we recover the known determinantal process of the complex Ginibre ensemble. Part two covers ensembles of Mittag-Leffler type with a singularity at the origin. For potentials $Q(zeta)=|zeta|^{2lambda}-(2c/N)log|zeta|$, with $lambda>0$ and $c>-1$, the limiting kernel obeys a linear differential equation of fractional order $1/lambda$ at the origin. For integer $m=1/lambda$ it can be solved in terms of Mittag-Leffler functions. In the last part, we derive the Wards equation for a general class of potentials as a tool to investigate universality. This allows us to determine the functional form of kernels that are translation invariant up to its integration domain.
We prove that the Abelian sandpile model on a random binary and binomial tree, as introduced in cite{rrs}, is not critical for all branching probabilities $p<1$; by estimating the tail of the annealed survival time of a random walk on the binary tree with randomly placed traps, we obtain some more information about the exponential tail of the avalanche radius. Next we study the sandpile model on $mathbb{Z}^d$ with some additional dissipative sites: we provide examples and sufficient conditions for non-criticality; we also make a connection with the parabolic Anderson model. Finally we initiate the study of the sandpile model with both sources and sinks and give a sufficient condition for non-criticality in the presence of a finite number of sources, using a connection with the homogeneous pinning model.
365 - Sung-Soo Byun , Markus Ebke 2021
We consider the eigenvalues of symplectic elliptic Ginibre matrices which are known to form a Pfaffian point process whose correlation kernel can be expressed in terms of the skew-orthogonal Hermite polynomials. We derive the scaling limits and the convergence rates of the correlation functions at the real bulk/edge of the spectrum, which in particular establishes the local universality at strong non-Hermiticity. Furthermore, we obtain the subleading corrections of the edge correlation kernels, which depend on the non-Hermiticity parameter contrary to the universal leading term. Our proofs are based on the asymptotic behaviour of the complex elliptic Ginibre ensemble due to Lee and Riser as well as on a version of the Christoffel-Darboux identity, a differential equation satisfied by the skew-orthogonal polynomial kernel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا