No Arabic abstract
In this paper, we present an algorithm for determining a curve on the earths terrain on which a stationary emitter must lie according to a single Doppler shift measured on an unmanned aerial vehicle (UAV) or a low earth orbit satellite (LEOS). The mobile vehicle measures the Doppler shift and uses it to build equations for a particular right circular cone according to the Doppler shift and the vehicles velocity, then determines a curve consisting of points which represents the intersections of the cone with an ellipsoid that approximately describes the earths surface. The intersection points of the cone with the ellipsoid are mapped into a digital terrain data set, namely Digital Terrain Elevation Data (DTED), to generate the intersection points on the earths terrain. The work includes consideration of the possibility that the rotation of the earth could affect the Doppler shift, and of the errors resulting from the non-constant refractive index of the atmosphere and from lack of precise knowledge of the transmitter frequency.
Micro-Doppler signatures contain considerable information about target dynamics. However, the radar sensing systems are easily affected by noisy surroundings, resulting in uninterpretable motion patterns on the micro-Doppler spectrogram. Meanwhile, radar returns often suffer from multipath, clutter and interference. These issues lead to difficulty in, for example motion feature extraction, activity classification using micro Doppler signatures ($mu$-DS), etc. In this paper, we propose a latent feature-wise mapping strategy, called Feature Mapping Network (FMNet), to transform measured spectrograms so that they more closely resemble the output from a simulation under the same conditions. Based on measured spectrogram and the matched simulated data, our framework contains three parts: an Encoder which is used to extract latent representations/features, a Decoder outputs reconstructed spectrogram according to the latent features, and a Discriminator minimizes the distance of latent features of measured and simulated data. We demonstrate the FMNet with six activities data and two experimental scenarios, and final results show strong enhanced patterns and can keep actual motion information to the greatest extent. On the other hand, we also propose a novel idea which trains a classifier with only simulated data and predicts new measured samples after cleaning them up with the FMNet. From final classification results, we can see significant improvements.
It is challenging to detect small-floating object in the sea clutter for a surface radar. In this paper, we have observed that the backscatters from the target brake the continuity of the underlying motion of the sea surface in the time-Doppler spectra (TDS) images. Following this visual clue, we exploit the local binary pattern (LBP) to measure the variations of texture in the TDS images. It is shown that the radar returns containing target and those only having clutter are separable in the feature space of LBP. An unsupervised one-class support vector machine (SVM) is then utilized to detect the deviation of the LBP histogram of the clutter. The outiler of the detector is classified as the target. In the real-life IPIX radar data sets, our visual feature based detector shows favorable detection rate compared to other three existing approaches.
Pulse Doppler radars suffer from range-Doppler ambiguity that translates into a trade-off between maximal unambiguous range and velocity. Several techniques, like the multiple PRFs (MPRF) method, have been proposed to mitigate this problem. The drawback of the MPRF method is that the received samples are not processed jointly, decreasing signal to noise ratio (SNR). To overcome the drawbacks of MPRF, we employ a random pulse phase coding approach to increase the unambiguous range region while preserving the unambiguous Doppler region. Our method encodes each pulse with a random phase, varying from pulse to pulse, and then processes the received samples jointly to resolve the range ambiguity. This technique increases the SNR through joint processing without the parameter matching procedures required in the MPRF method. The recovery algorithm is designed based on orthogonal matching pursuit so that it can be directly applied to either Nyquist or sub-Nyquist samples. The unambiguous delay-Doppler recovery condition is derived with compressed sensing theory in noiseless settings. In particular, an upper bound to the number of targets is given, with respect to the number of samples in each pulse repetition interval and the number of transmit pulses. Simulations show that in both regimes of Nyquist and sub-Nyquist samples our method outperforms the popular MPRF approach in terms of hit rate.
Micro-Doppler analysis has become increasingly popular in recent years owning to the ability of the technique to enhance classification strategies. Applications include recognising everyday human activities, distinguishing drone from birds, and identifying different types of vehicles. However, noisy time-frequency spectrograms can significantly affect the performance of the classifier and must be tackled using appropriate denoising algorithms. In recent years, deep learning algorithms have spawned many deep neural network-based denoising algorithms. For these methods, noise modelling is the most important part and is used to assist in training. In this paper, we decompose the problem and propose a novel denoising scheme: first, a Generative Adversarial Network (GAN) is used to learn the noise distribution and correlation from the real-world environment; then, a simulator is used to generate clean Micro-Doppler spectrograms; finally, the generated noise and clean simulation data are combined as the training data to train a Convolutional Neural Network (CNN) denoiser. In experiments, we qualitatively and quantitatively analyzed this procedure on both simulation and measurement data. Besides, the idea of learning from natural noise can be applied well to other existing frameworks and demonstrate greater performance than other noise models.
Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commodity flow is optimized in some sense. LoMuF is a combination of two fundamental problems, namely, the facility location problem and the network flow problem. We study the hardness and algorithmic issues of the problem in various settings. The findings lie in three aspects. First, a series of NP-hardness and APX-hardness results are obtained, uncovering the inherent difficulty in solving this problem. Second, we propose an approximation algorithm for general undirected networks and an exact algorithm for undirected trees, which naturally induce efficient approximation algorithms on directed networks. Third, we observe separations between directed networks and undirected ones, indicating that imposing direction on edges makes the problem strictly harder. These results show the richness of the problem and pave the way to further studies.