No Arabic abstract
The strong coupling between spin, lattice and electronic degrees of freedom in magnetic materials can produce interesting phenomena, including multiferroic and magnetodielectric (MD) behavior, and exotic coupled excitations, such as electromagnons. We present a temperature- and magnetic-field-dependent inelastic light (Raman) scattering study that reveals the emergence of vibronic modes, i.e., coupled vibrational and crystal-electric-field (CEF) electronic excitations, in the unconventional rare-earth MD material, $text{Ce}_2text{O}_3$. The energies and intensities of these emergent vibronic modes are indicative of enhanced vibronic coupling and increased modulation of the dielectric susceptibility in the Neel state ($T_text{N} approx 6.2,text{K}$). The field-dependences of the energies and intensities of these vibronic modes are consistent with a decrease of both the vibronic coupling and the dielectric fluctuations associated with these modes below $T_text{N}$. These results suggest a distinctive mechanism for MD behavior in $text{Ce}_2text{O}_3$ that is associated with a field-tunable coupling between CEF and phonon states.
Magnetoelectric materials have generated wide technological and scientific interest because of the rich phenomena these materials exhibit, including the coexistence of magnetic and ferroelectric orders, magnetodielectric behavior, and exotic hybrid excitations such as electromagnons. The multiferroic spinel material, CoCr$_2$O$_4$, is a particularly interesting example of a multiferroic material, because evidence for magnetoelectric behavior in the ferrimagnetic phase seems to conflict with traditional noncollinear-spin-driven mechanisms for inducing a macroscopic polarization. This paper reports an inelastic light scattering study of the magnon and phonon spectrum of CoCr$_2$O$_4$ as simultaneous functions of temperature, pressure, and magnetic field. Below the Curie temperature ($T_C sim 94$ K) of CoCr$_2$O$_4$ we observe a $omega sim 16 ,text{cm}^{-1}$ $boldsymbol q=0$ magnon having T$_{1g}$-symmetry, which has the transformation properties of an axial vector. The anomalously large Raman intensity of the T$_{1g}$-symmetry magnon is characteristic of materials with a large magneto-optical response and likely arises from large magnetic fluctuations that strongly modulate the dielectric response in CoCr$_2$O$_4$. The Raman susceptibility of the T$_{1g}$-symmetry magnon exhibits a strong magnetic-field dependence that is consistent with the magnetodielectric response observed in CoCr$_2$O$_4$, suggesting that magnetodielectric behavior in CoCr$_2$O$_4$ primarily arises from the field-dependent suppression of magnetic fluctuations that are strongly coupled to long-wavelength phonons. Increasing the magnetic anisotropy in CoCr$_2$O$_4$ with applied pressure decreases the magnetic field-dependence of the T$_{1g}$-symmetry magnon Raman susceptibility in CoCr$_2$O$_4$, suggesting that strain can be used to control the magnetodielectric response in CoCr$_2$O$_4$.
We report on optical excitations in the magnetically ordered phases of multiferroic Fe$_{1.86}$Zn$_{0.14}$Mo$_3$O$_8$ in the frequency range from 10-130 cm$^{-1}$ (0.3-3.9 THz). In the collinear easy-axis antiferromagnetic phase below $T_N=50$~K eleven optically active modes have been observed in finite magnetic fields, assuming that the lowest-lying mode is doubly degenerate. The large number of modes reflects either a more complex magnetic structure than in pure Fe$_{2}$Mo$_3$O$_8$ or that spin stretching modes become active in addition to the usual spin precessional modes. Their magnetic field dependence, for fields applied along the easy axis, reflects the irreversible magnetic-field driven phase transition from the antiferromagnetic ground state to a ferrimagnetic state, while the number of modes remains unchanged in the covered frequency region. We determined selection rules for some of the AFM modes by investigating all polarization configurations and identified magnetic- and electric-dipole active modes as well. In addition to these sharp resonances, a broad electric-dipole active excitation band, which is not influenced by the external magnetic field, occurs below $T_N$ with an onset at 12 cm$^{-1}$. We are able to model this absorption band as a vibronic excitation related to the lowest-lying Fe$^{2+}$ electronic states in tetrahedral environment.
We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 K to 315 K covering a spectral range from 100-2200 cm-1 and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering induced phonon renormalization are evident in (a) anomalous temperature dependence of many modes with frequencies below 850 cm-1, particularly near the magnetic transition temperature Tc ~ 250 K, (b) distinct changes in band positions of high frequency Raman bands between 1100-1800 cm-1, in particular a broad mode near 1250 cm-1 appears only below Tc attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies at ~ 100 K, due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of phonons spectrum and their coupling with spins.
Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce$^{11}$B$_2$C$_2$. The powder diffraction experiment confirms formation of a long-range magnetic order at $T_{rm N} = 7.3$ K, where a sinusoidally modulated structure is realized with the modulation vector ${bm q} = [0.167(3), 0.167(3), 0.114(3)]$. Inelastic excitation spectra in the paramagnetic phase comprise significantly broad quasielastic and inelastic peaks centered at $hbar omega approx 0, 8$ and 65 meV. Crystalline-electric-field (CEF) analysis satisfactorily reproduces the observed spectra, confirming their CEF origin. The broadness of the quasielastic peak indicates strong spin fluctuations due to coupling between localized $4f$ spins and conduction electrons in the paramagnetic phase. A prominent feature is suppression of the quasielastic fluctuations, and concomitant growth of a sharp inelastic peak in a low energy region below $T_{rm N}$. This suggests dissociation of the conduction and localized $4f$ electrons on ordering, and contrasts the presently observed incommensurate phase with spin-density-wave order frequently seen in heavy fermion compounds, such as Ce(Ru$_{1-x}$La$_x$)$_2$Si$_2$.
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these compounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.