No Arabic abstract
The motion of active polymers in a porous medium is shown to depend critically on flexibilty, activity and degree of polymerization. For given Peclet number, we observe a transition from localisation to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behaviour.
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest in nature and industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. In this study, we experimentally studied drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by an optical imaging method under different drainage conditions, in which pore-scale information from Voronoi and Delaunay tessellation was used to characterise the topology of saturated cluster distributions. By employing statistical analyses, the observed spatial and temporal information of multiphase flow and fluid entrapment in porous media are described. The results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number correlates negatively to the scale parameter and positively to the shape parameter. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in partially saturated porous media, using both the degree of saturation and generalised Bond number.
We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with recent experiments of emph{Escherichia coli}, the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. We find that the effective translational diffusivities of run-reverse agents can be enhanced up to two orders in magnitude, compared to their non-reversing counterparts, and exhibit a non-monotonic behavior as a function of the reversal rate, which we rationalize using a coarse-grained model. Furthermore, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. More significantly, our criterion unifies results for porous media with disparate pore sizes and shapes and thus provides a fundamental principle for optimal transport of microorganisms and cargo-carriers in densely-packed biological and environmental settings.
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of pore structure with different characteristic lengths. The multiphase flow behaviours in hierarchical porous media have remained elusive. In this study, we investigate the influences of hierarchical structures in porous media on the dynamics of immiscible fingering during fluid-fluid displacement. By conducting a series of numerical simulations, we found that the immiscible fingering can be suppressed due to the existence of secondary porous structures. To characterise the fingering dynamics in hierarchical porous media, a phase diagram is constructed by introducing a scaling parameter, i.e., the ratio of time scales considering the combined effect of characteristic pore sizes and wettability. The findings present in this work provide a basis for further research on the application of hierarchical porous media for controlling immiscible fingerings.
Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We use these results to examine the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed, and changes in the beating patterns due to viscoelasticity can reverse swimming direction.
Imbibition is a commonly encountered multiphase problem in various fields, and exact prediction of imbibition processes is a key issue for better understanding capillary flow in heterogeneous porous media. In this work, a numerical framework for describing imbibition processes in porous media with material heterogeneity is proposed to track the moving wetting front with the help of a partially saturated region at the front vicinity. A new interface treatment, named the interface integral method, is developed here, combined with which the proposed numerical model provides a complete framework for imbibition problems. After validation of the current model with existing experimental results of one-dimensional imbibition, simulations on a series of two-dimensional cases are analysed with the presences of multiple porous phases. The simulations presented here not only demonstrate the suitability of the numerical framework on complex domains but also present its feasibility and potential for further engineering applications involving imbibition in heterogeneous media.