Do you want to publish a course? Click here

Dynamics of Viscous Entrapped Saturated Zones in Partially Wetted Porous Media

89   0   0.0 ( 0 )
 Added by Yixiang Gan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest in nature and industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. In this study, we experimentally studied drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by an optical imaging method under different drainage conditions, in which pore-scale information from Voronoi and Delaunay tessellation was used to characterise the topology of saturated cluster distributions. By employing statistical analyses, the observed spatial and temporal information of multiphase flow and fluid entrapment in porous media are described. The results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number correlates negatively to the scale parameter and positively to the shape parameter. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in partially saturated porous media, using both the degree of saturation and generalised Bond number.



rate research

Read More

The motion of active polymers in a porous medium is shown to depend critically on flexibilty, activity and degree of polymerization. For given Peclet number, we observe a transition from localisation to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behaviour.
Analytical solutions and a vast majority of numerical ones for fracture propagation in saturated porous media yield smooth behavior while experiments, field observations and a few numerical solutions reveal stepwise crack advancement and pressure oscillations. To explain this fact, we invoke self-organization of rupture observed in fracturing solids, both dry and fully saturated, when two requirements are satisfied: i) the external drive has a much slower timescale than fracture propagation; and ii) the increment of the external load (drive) is applied only when the internal rearrangement of fracture is over. These requirements are needed to obtain clean Self Organised Criticality (SOC) in quasi-static situations. They imply that there should be no restriction on the fracture velocity i.e. algorithmically the fracture advancement rule should always be independent of the crack velocity. Generally, this is not the case when smooth answers are obtained which are often unphysical. Under the above conditions hints of Self Organized Criticality are evident in heterogeneous porous media in quasi-static conditions using a lattice model, showing stepwise advancement of the fracture and pressure oscillations. We extend this model to incorporate inertia forces and show that this behavior still holds. By incorporating the above requirements in numerical fracture advancement algorithms for cohesive fracture in saturated porous continua we also reproduce stepwise advancements and pressure oscillations both in quasi-static and dynamic situations. Since dynamic tests of dry specimens show that the fracture advancement velocity is not constant we replicate such an effect with a model of a debonding beam on elastic foundation. This is the first step before introducing the interaction with a fluid.
Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigate the tortuosity and dispersion by analyzing the first two statistical moments of tracer trajectories. For most initial configurations, tortuosity decreases in time as a result of erosion increasing the porosity. However, we find that tortuosity can also increase transiently in certain cases. The porosity-tortuosity relationships that result from our simulations are compared with models available in the literature. Asymptotic dispersion rates are also strongly affected by the erosion process, as well as by the number and distribution of the eroding bodies. Finally, we analyze the pore size distribution of an eroding geometry. The simulations are performed by combining a high-fidelity boundary integral equation solver for the fluid equations, a second-order stable time stepping method to simulate erosion, and new numerical methods to stably and accurately resolve nearly-touching eroded bodies and particle trajectories near the eroding bodies.
188 - Si Suo , Mingchao Liu , 2019
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of pore structure with different characteristic lengths. The multiphase flow behaviours in hierarchical porous media have remained elusive. In this study, we investigate the influences of hierarchical structures in porous media on the dynamics of immiscible fingering during fluid-fluid displacement. By conducting a series of numerical simulations, we found that the immiscible fingering can be suppressed due to the existence of secondary porous structures. To characterise the fingering dynamics in hierarchical porous media, a phase diagram is constructed by introducing a scaling parameter, i.e., the ratio of time scales considering the combined effect of characteristic pore sizes and wettability. The findings present in this work provide a basis for further research on the application of hierarchical porous media for controlling immiscible fingerings.
The enhanced oil recovery technique of low-salinity (LS) water flooding is a topic of substantial interest in the petroleum industry. Studies have shown that LS brine injection can increase oil production relative to conventional high-salinity (HS) brine injection, but contradictory results have also been reported and an understanding of the underlying mechanisms remains elusive. We have recently developed a steady-state pore network model to simulate oil recovery by LS brine injection in uniformly wetted pore structures (Watson et al., Transp. Porous Med. 118, 201-223, 2017). We extend this approach here to investigate the low-salinity effect (LSE) in heterogeneously wetted media. We couple a model of capillary force-driven fluid displacement to a novel tracer algorithm and track the salinity front in the pore network as oil and HS brine are displaced by injected LS brine. The wettability of the pore structure is modified in regions where water salinity falls below a critical threshold, and simulations show that this can have significant consequences for oil recovery. For networks that contain spanning clusters of both water-wet and oil-wet (OW) pores prior to flooding, our results demonstrate that the OW pores contain the only viable source of incremental oil recovery by LS brine injection. Moreover, we show that a LS-induced increase in microscopic sweep efficiency in the OW pore fraction is a necessary, but not sufficient, condition to guarantee additional oil production. Simulations suggest that the fraction of OW pores in the network, the average network connectivity and the initial HS brine saturation are key factors that can determine the extent of any improvement in oil recovery in heterogeneously wetted networks following LS brine injection. This study highlights that the mechanisms of the LSE can be markedly different in uniformly wetted and non-uniformly wetted porous media.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا