Do you want to publish a course? Click here

Dimensional effects in Efimov physics

84   0   0.0 ( 0 )
 Added by M. T. Yamashita
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efimov physics is drastically affected by the change of spatial dimensions. Efimov states occur in a tridimensional (3D) environment, but disappear in two (2D) and one (1D) dimensions. In this paper, dedicated to the memory of Prof. Faddeev, we will review some recent theoretical advances related to the effect of dimensionality in the Efimov phenomenon considering three-boson systems interacting by a zero-range potential. We will start with a very ideal case with no physical scales, passing to a system with finite energies in the Born-Oppenheimer (BO) approximation and finishing with a general system. The physical reason for the appearance of the Efimov effect is given essentially by two reasons which can be revealed by the BO approximation - the form of the effective potential is proportional to $1/R^2$ ($R$ is the relative distance between the heavy particles) and its strength is smaller than the critical value given by $-(D-2)^2/4$, where $D$ is the effective dimension.



rate research

Read More

We study a three-body system, formed by two identical heavy bosons and a light particle, in the Born-Oppenheimer approximation for an arbitrary dimension $D$. We restrict $D$ to the interval $2,<,D,<,4$, and derive the heavy-heavy $D$-dimensional effective potential proportional to $1/R^2$ ($R$ is the relative distance between the heavy particles), which is responsible for the Efimov effect. We found that the Efimov states disappear once the critical strength of the heavy-heavy effective potential $1/R^2$ approaches the limit $-(D-2)^2/4$. We obtained the scaling function for the $^{133}$Cs-$^{133}$Cs-$^6$Li system as the limit cycle of the correlation between the energies of two consecutive Efimov states as a function of $D$ and the heavy-light binding energy $E^{D}_2$. In addition, we found that the energy of the $(N+1)^{rm th}$ excited state reaches the two-body continuum independently of the dimension $D$ when $sqrt{E^{D}_2/E_3^{(N)}}=0.89$, where $E_3^{(N)}$ is the $N^{rm th}$ excited three-body binding energy.
The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present article we determine for a general $AAB$ system formed by two identical bosons $A$ and a third particle $B$ in the two-body unitary limit, the dimensionsality $D$ for which the Efimov effect can exist for different values of the mass ratio $mathpzc{A}=m_B/m_A$. In addition, we provide a prediction for the Efimov discrete scaling factor, ${rm exp},(pi/s)$, as a function of a wide range of values of $mathpzc{A}$ and $D$, which can be tested in experiments that can be realized with currently available technology.
The discrete Efimov scaling behavior, well-known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of atom-molecule elastic cross-section in mass imbalanced systems. That happens in the collision of a heavy atom with mass $m_H$ with a weakly-bound dimer formed by the heavy atom and a lighter one with mass $m_L ll m_H$. Approaching the heavy-light unitary limit the $s-$wave elastic cross-section $sigma$ will present a sequence of zeros/minima at collision energies following closely the Efimov geometrical law. Our results open a new perspective to detect the discrete scaling behavior from low-energy scattering data, which is timely in view of the ongoing experiments with ultra-cold binary mixtures having strong mass asymmetries, such as Lithium and Caesium or Lithium and Ytterbium.
Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by a continuous-scale invariance, which is broken to a discrete one when three or more particles come into play. This symmetry induces a universal behavior for different systems, independent of the details of the underlying interaction, rooted in the smallness of the ratio $ell/a_B ll 1$, where the length $a_B$ is associated to the binding energy of the two-body system $E_2=hbar^2/m a_B^2$ and $ell$ is the natural length given by the interaction range. Efimov physics refers to this universal behavior, which is often hidden by the on-set of system-specific non-universal effects. In this work we identify universal properties by providing an explicit link of physical systems to their unitary limit, in which $a_Brightarrowinfty$, and show that nuclear systems belong to this class of universality.
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium, many-body regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا