No Arabic abstract
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Deep neural networks have demonstrated cutting edge performance on various tasks including classification. However, it is well known that adversarially designed imperceptible perturbation of the input can mislead advanced classifiers. In this paper, Permutation Phase Defense (PPD), is proposed as a novel method to resist adversarial attacks. PPD combines random permutation of the image with phase component of its Fourier transform. The basic idea behind this approach is to turn adversarial defense problems analogously into symmetric cryptography, which relies solely on safekeeping of the keys for security. In PPD, safe keeping of the selected permutation ensures effectiveness against adversarial attacks. Testing PPD on MNIST and CIFAR-10 datasets yielded state-of-the-art robustness against the most powerful adversarial attacks currently available.
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The research on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually realistic and more efficiently remains unsolved. This paper proposes a novel framework called Attack-Inspired GAN (AI-GAN), where a generator, a discriminator, and an attacker are trained jointly. Once trained, it can generate adversarial perturbations efficiently given input images and target classes. Through extensive experiments on several popular datasets eg MNIST and CIFAR-10, AI-GAN achieves high attack success rates and reduces generation time significantly in various settings. Moreover, for the first time, AI-GAN successfully scales to complicated datasets eg CIFAR-100 with around $90%$ success rates among all classes.
Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense methods focus on some specific types of adversarial examples and may fail to defend well in real-world applications. In practice, we may face many types of attacks where the exact type of adversarial examples in real-world applications can be even unknown. In this paper, motivated by that adversarial examples are more likely to appear near the classification boundary, we study adversarial examples from a new perspective that whether we can defend against adversarial examples by pulling them back to the original clean distribution. We theoretically and empirically verify the existence of defense affine transformations that restore adversarial examples. Relying on this, we learn a defense transformer to counterattack the adversarial examples by parameterizing the affine transformations and exploiting the boundary information of DNNs. Extensive experiments on both toy and real-world datasets demonstrate the effectiveness and generalization of our defense transformer.