No Arabic abstract
In this paper, we exploit the gradient flow structure of continuous-time formulations of Bayesian inference in terms of their numerical time-stepping. We focus on two particular examples, namely, the continuous-time ensemble Kalman-Bucy filter and a particle discretisation of the Fokker-Planck equation associated to Brownian dynamics. Both formulations can lead to stiff differential equations which require special numerical methods for their efficient numerical implementation. We compare discrete gradient methods to alternative semi-implicit and other iterative implementations of the underlying Bayesian inference problems.
This paper develops a new empirical Bayesian inference algorithm for solving a linear inverse problem given multiple measurement vectors (MMV) of under-sampled and noisy observable data. Specifically, by exploiting the joint sparsity across the multiple measurements in the sparse domain of the underlying signal or image, we construct a new support informed sparsity promoting prior. Several applications can be modeled using this framework, and as a prototypical example we consider reconstructing an image from synthetic aperture radar (SAR) observations using nearby azimuth angles. Our numerical experiments demonstrate that using this new prior not only improves accuracy of the recovery, but also reduces the uncertainty in the posterior when compared to standard sparsity producing priors.
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming Handbook of Mixture Analysis.
Three problems for a discrete analogue of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: 1) the problem with a point source on an entire plane; 2) the problem of diffraction by a Dirichlet half-line; 3) the problem of diffraction by a Dirichlet right angle. It is shown that total field can be represented as an integral of an algebraic function over a contour drawn on some manifold. The latter is a torus. As the result, the explicit solutions are obtained in terms of recursive relations (for the Greens function), algebraic functions (for the half-line problem), or elliptic functions (for the right angle problem).
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the lower semicontinuity of orthogonal rank. The lower semicontinuity guarantees the existence of low orthogonal rank approximation. To fit the orthogonal decomposition, we propose an algorithm based on the augmented Lagrangian method and guarantee the orthogonality by a novel orthogonalization procedure. Numerical experiments show that the proposed method has a great advantage over the existing methods for strongly orthogonal decompositions in terms of the approximation error.
In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that: one wave propagation direction can be taken as an evolution direction, and we then can discretize it using a classical scheme like Backward Euler. Consequently, we obtain a set of quasi-gas-dynamic (QGD) models with different heterogeneous permeability fields. Then, we employ constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) to perform spatial discretization for the problem. The resulting system can be solved by combining the central difference in time evolution. Due to the variable media, we apply the technique of proper orthogonal decomposition (POD) to further the dimension of the problem and solve the corresponding model problem in the POD space instead of in the whole multiscale space spanned by all possible multiscale basis functions. We prove the stability of the full discretization scheme and give the convergence analysis of the proposed approximation scheme. Numerical results verify the effectiveness of the proposed method.