Do you want to publish a course? Click here

Rank properties and computational methods for orthogonal tensor decompositions

124   0   0.0 ( 0 )
 Added by Chao Zeng
 Publication date 2021
and research's language is English
 Authors Chao Zeng




Ask ChatGPT about the research

The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the lower semicontinuity of orthogonal rank. The lower semicontinuity guarantees the existence of low orthogonal rank approximation. To fit the orthogonal decomposition, we propose an algorithm based on the augmented Lagrangian method and guarantee the orthogonality by a novel orthogonalization procedure. Numerical experiments show that the proposed method has a great advantage over the existing methods for strongly orthogonal decompositions in terms of the approximation error.



rate research

Read More

108 - Jiawang Nie , Zi Yang 2019
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties for Hermitian tensors such as Hermitian decompositions and Hermitian ranks. For canonical basis tensors, we determine their Hermitian ranks and decompositions. For real Hermitian tensors, we give a full characterization for them to have Hermitian decompositions over the real field. In addition to traditional flattening, Hermitian tensors specially have Hermitian and Kronecker flattenings, which may give different lower bounds for Hermitian ranks. We also study other topics such as eigenvalues, positive semidefiniteness, sum of squares representations, and separability.
Low-rank Tucker and CP tensor decompositions are powerful tools in data analytics. The widely used alternating least squares (ALS) method, which solves a sequence of over-determined least squares subproblems, is costly for large and sparse tensors. We propose a fast and accurate sketched ALS algorithm for Tucker decomposition, which solves a sequence of sketched rank-constrained linear least squares subproblems. Theoretical sketch size upper bounds are provided to achieve $O(epsilon)$ relative error for each subproblem with two sketching techniques, TensorSketch and leverage score sampling. Experimental results show that this new ALS algorithm, combined with a new initialization scheme based on randomized range finder, yields up to $22.0%$ relative decomposition residual improvement compared to the state-of-the-art sketched randomized algorithm for Tucker decomposition of various synthetic and real datasets. This Tucker-ALS algorithm is further used to accelerate CP decomposition, by using randomized Tucker compression followed by CP decomposition of the Tucker core tensor. Experimental results show that this algorithm not only converges faster, but also yields more accurate CP decompositions.
207 - Jiawang Nie , Ke Ye , Lihong Zhi 2020
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of such decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.
We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We describe the complexity of our algorithm in terms of the multigraded regularity of a multihomogeneous ideal. We prove effective bounds for many formats and ranks and conjecture a general formula. These bounds are of independent interest for overconstrained polynomial system solving. Our experiments show that our algorithm can outperform state-of-the-art algebraic algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
122 - Karim Halaseh , Tommi Muller , 2020
In this paper we study the problem of recovering a tensor network decomposition of a given tensor $mathcal{T}$ in which the tensors at the vertices of the network are orthogonally decomposable. Specifically, we consider tensor networks in the form of tensor trains (aka matrix product states). When the tensor train has length 2, and the orthogonally decomposable tensors at the two vertices of the network are symmetric, we show how to recover the decomposition by considering random linear combinations of slices. Furthermore, if the tensors at the vertices are symmetric but not orthogonally decomposable, we show that a whitening procedure can transform the problem into an orthogonal one, thereby yielding a solution for the decomposition of the tensor. When the tensor network has length 3 or more and the tensors at the vertices are symmetric and orthogonally decomposable, we provide an algorithm for recovering them subject to some rank conditions. Finally, in the case of tensor trains of length two in which the tensors at the vertices are orthogonally decomposable but not necessarily symmetric, we show that the decomposition problem reduces to the problem of a novel matrix decomposition, that of an orthogonal matrix multiplied by diagonal matrices on either side. We provide two solutions for the full-rank tensor case using Sinkhorns theorem and Procrustes algorithm, respectively, and show that the Procrustes-based solution can be generalized to any rank case. We conclude with a multitude of open problems in linear and multilinear algebra that arose in our study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا