Do you want to publish a course? Click here

Perturbed-History Exploration in Stochastic Multi-Armed Bandits

186   0   0.0 ( 0 )
 Added by Branislav Kveton
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose an online algorithm for cumulative regret minimization in a stochastic multi-armed bandit. The algorithm adds $O(t)$ i.i.d. pseudo-rewards to its history in round $t$ and then pulls the arm with the highest average reward in its perturbed history. Therefore, we call it perturbed-history exploration (PHE). The pseudo-rewards are carefully designed to offset potentially underestimated mean rewards of arms with a high probability. We derive near-optimal gap-dependent and gap-free bounds on the $n$-round regret of PHE. The key step in our analysis is a novel argument that shows that randomized Bernoulli rewards lead to optimism. Finally, we empirically evaluate PHE and show that it is competitive with state-of-the-art baselines.



rate research

Read More

We propose a new online algorithm for minimizing the cumulative regret in stochastic linear bandits. The key idea is to build a perturbed history, which mixes the history of observed rewards with a pseudo-history of randomly generated i.i.d. pseudo-rewards. Our algorithm, perturbed-history exploration in a linear bandit (LinPHE), estimates a linear model from its perturbed history and pulls the arm with the highest value under that model. We prove a $tilde{O}(d sqrt{n})$ gap-free bound on the expected $n$-round regret of LinPHE, where $d$ is the number of features. Our analysis relies on novel concentration and anti-concentration bounds on the weighted sum of Bernoulli random variables. To show the generality of our design, we extend LinPHE to a logistic reward model. We evaluate both algorithms empirically and show that they are practical.
We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a sufficiently high probability. We call our algorithm Giro, which stands for garbage in, reward out. We analyze Giro in a Bernoulli bandit and derive a $O(K Delta^{-1} log n)$ bound on its $n$-round regret, where $Delta$ is the difference in the expected rewards of the optimal and the best suboptimal arms, and $K$ is the number of arms. The main advantage of our exploration design is that it easily generalizes to structured problems. To show this, we propose contextual Giro with an arbitrary reward generalization model. We evaluate Giro and its contextual variant on multiple synthetic and real-world problems, and observe that it performs well.
We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drifted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, $varepsilon$-Greedy, and Thompson Sampling. Our results show that they all achieve $mathcal{O}(log T)$ regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.
Inspired by the Reward-Biased Maximum Likelihood Estimate method of adaptive control, we propose RBMLE -- a novel family of learning algorithms for stochastic multi-armed bandits (SMABs). For a broad range of SMABs including both the parametric Exponential Family as well as the non-parametric sub-Gaussian/Exponential family, we show that RBMLE yields an index policy. To choose the bias-growth rate $alpha(t)$ in RBMLE, we reveal the nontrivial interplay between $alpha(t)$ and the regret bound that generally applies in both the Exponential Family as well as the sub-Gaussian/Exponential family bandits. To quantify the finite-time performance, we prove that RBMLE attains order-optimality by adaptively estimating the unknown constants in the expression of $alpha(t)$ for Gaussian and sub-Gaussian bandits. Extensive experiments demonstrate that the proposed RBMLE achieves empirical regret performance competitive with the state-of-the-art methods, while being more computationally efficient and scalable in comparison to the best-performing ones among them.
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedback signal. Moreover, in each step, it can take a special action, called the $stop$ action, that ends the current episode. After the $stop$ action is taken, the learner collects a terminal reward, and observes the costs and terminal rewards associated with each step of the episode. The goal of the learner is to maximize its cumulative gain (i.e., the terminal reward minus costs) over all episodes by learning to choose the best sequence of actions based on the feedback. First, we define an {em oracle} benchmark, which sequentially selects the actions that maximize the expected immediate gain. Then, we propose our online learning algorithm, named {em FeedBack Adaptive Learning} (FeedBAL), and prove that its regret with respect to the benchmark is bounded with high probability and increases logarithmically in expectation. Moreover, the regret only has polynomial dependence on the number of steps, actions and states. eMAB can be used to model applications that involve humans in the loop, ranging from personalized medical screening to personalized web-based education, where sequences of actions are taken in each episode, and optimal behavior requires adapting the chosen actions based on the feedback.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا