No Arabic abstract
We provide a computer algebra package called Random Tensor Network Integrator (RTNI). It allows to compute averages of tensor networks containing multiple Haar-distributed random unitary matrices and deterministic symbolic tensors. Such tensor networks are represented as multigraphs, with vertices corresponding to tensors or random unitaries and edges corresponding to tensor contractions. Input and output spaces of random unitaries may be subdivided into arbitrary tensor factors, with dimensions treated symbolically. The algorithm implements the graphical Weingarten calculus and produces a weighted sum of tensor networks representing the average over the unitary group. We illustrate the use of this algorithmic tool on some examples from quantum information theory, including entropy calculations for random tensor network states as considered in toy models for holographic duality. Mathematica and Python implementations are supplied.
We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background independent quantum gravity, and for importing quantum gravity tools in tensor network research.
Mana is a measure of the amount of non-Clifford resources required to create a state; the mana of a mixed state on $ell$ qudits bounded by $le frac 1 2 (ell ln d - S_2)$; $S_2$ the states second Renyi entropy. We compute the mana of Haar-random pure and mixed states and find that the mana is nearly logarithmic in Hilbert space dimension: that is, extensive in number of qudits and logarithmic in qudit dimension. In particular, the average mana of states with less-than-maximal entropy falls short of that maximum by $ln pi/2$. We then connect this result to recent work on near-Clifford approximate $t$-designs; in doing so we point out that mana is a useful measure of non-Clifford resources precisely because it is not differentiable.
Tensor network theory and quantum simulation are respectively the key classical and quantum computing methods in understanding quantum many-body physics. Here, we introduce the framework of hybrid tensor networks with building blocks consisting of measurable quantum states and classically contractable tensors, inheriting both their distinct features in efficient representation of many-body wave functions. With the example of hybrid tree tensor networks, we demonstrate efficient quantum simulation using a quantum computer whose size is significantly smaller than the one of the target system. We numerically benchmark our method for finding the ground state of 1D and 2D spin systems of up to $8times 8$ and $9times 8$ qubits with operations only acting on $8+1$ and $9+1$ qubits,~respectively. Our approach sheds light on simulation of large practical problems with intermediate-scale quantum computers, with potential applications in chemistry, quantum many-body physics, quantum field theory, and quantum gravity thought experiments.
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically-motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
The AdS/CFT correspondence conjectures a holographic duality between gravity in a bulk space and a critical quantum field theory on its boundary. Tensor networks have come to provide toy models to understand such bulk-boundary correspondences, shedding light on connections between geometry and entanglement. We introduce a versatile and efficient framework for studying tensor networks, extending previous tools for Gaussian matchgate tensors in 1+1 dimensions. Using regular bulk tilings, we show that the critical Ising theory can be realized on the boundary of both flat and hyperbolic bulk lattices, obtaining highly accurate critical data. Within our framework, we also produce translation-invariant critical states by an efficiently contractible tensor network with the geometry of the multi-scale entanglement renormalization ansatz. Furthermore, we establish a link between holographic quantum error correcting codes and tensor networks. This work is expected to stimulate a more comprehensive study of tensor-network models capturing bulk-boundary correspondences.