Do you want to publish a course? Click here

Ryu-Takayanagi Formula for Symmetric Random Tensor Networks

108   0   0.0 ( 0 )
 Added by Mingyi Zhang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background independent quantum gravity, and for importing quantum gravity tools in tensor network research.



rate research

Read More

We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple interacting group field theory. The expectation value of the entanglement entropy is calculated by an expansion into stranded Feynman graphs and is shown to be captured by a Ryu- Takayanagi formula. For a simple interacting group field theory, we can prove the linear corrections, given by a polynomial perturbation of the Gaussian measure, to be negligible for a broad class of networks.
140 - Daniel Harlow 2016
I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a purely boundary interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the validity of the formula, but which removes any tension with the linearity of quantum mechanics. Moreover they suggest a boundary interpretation of the bit threads recently introduced by Freedman and Headrick.
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R{e}nyi entropy of such states and recover the Ryu-Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
The Ryu-Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu-Takayangi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than as a surface. In this paper, we propose that null rays emitted from the AdS boundary can be regarded as such a flow. In particular, we show that in spherical symmetric static spacetimes with a negative cosmological constant, wave fronts of null geodesics from a point on the AdS boundary become extremal surfaces and therefore they can be regarded as the Ryu-Takayanagi surfaces. In addition, based on the viewpoint of flow, we propose a wave optical formula to calculate the holographic entanglement entropy.
Random tensor models are generalizations of random matrix models which admit $1/N$ expansions. In this article we show that the topological recursion, a modern approach to matrix models which solves the loop equations at all orders, is also satisfied in some tensor models. While it is obvious in some tensor models which are matrix models in disguise, it is far from clear that it can be applied to others. Here we focus on melonic interactions for which the models are best understood, and further restrict to the quartic case. Then Hubbard-Stratonovich transformation maps the tensor model to a multi-matrix model with multi-trace interactions. We study this matrix model and show that after substracting the leading order, it satisfies the blobbed topological recursion. It is a new extension of the topological recursion, recently introduced by Borot and further studied by Borot and Shadrin. Here it applies straightforwardly, yet with a novelty as our model displays a disconnected spectral curve, which is the union of several spectral curves of the Gaussian Unitary Ensemble. Finally, we propose a way to evaluate expectations of tensorial observables using the correlation functions computed from the blobbed topological recursion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا