No Arabic abstract
Atomically thin magnets are the key element to build up spintronics based on two-dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities to improve the device performance efficiently. Here, we report the intrinsic ferromagnetism in atomically thin monolayer CrBr3, directly probed by polarization resolved magneto-photoluminescence. The spontaneous magnetization persists in monolayer CrBr3 with a Curie temperature of 34 K. The development of magnons by the thermal excitation is in line with the spin-wave theory. We attribute the layer-number dependent hysteresis loops in thick layers to the magnetic domain structures. As a stable monolayer material in air, CrBr3 provides a convenient platform for fundamental physics and pushes the potential applications of the two-dimensional ferromagnetism.
Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on Cu(111) surface, which shows an unexpected remarkably sharp and strong emission near 3.16 eV (full-width at half-maximum $leq$ 3meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue-shift, showing the characteristic negative thermal coefficient of graphene. Observed PLs originate from significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene $pi$ and Cu d orbitals of the 1st and 2nd Cu layers at a shifted saddle point 0.525(M+K) of Brillouin zone. This finding provides a new pathway to engineering novel optoelectronic graphene devices, whilst maintaining the outstanding electrical properties of graphene.
Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW material that exhibits 2D itinerant magnetism remains elusive. In fact, the synthesis of such single-crystal ferromagnetic metals with strong perpendicular anisotropy at the atomically thin limit has been a long-standing challenge. Here, we demonstrate that monolayer Fe3GeTe2 is a robust 2D itinerant ferromagnet with strong out-of-plane anisotropy. Layer-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanying a fast drop of the Curie temperature from 207 K down to 130 K in the monolayer. For Fe3GeTe2 flakes thicker than ~15 nm, a peculiar magnetic behavior emerges within an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces a novel atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant Ising ferromagnetism and for engineering spintronic vdW heterostructures.
Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction $ u = 1/3$) and spin-unpolarized ($ u = 2/5$) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.
We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, the parameters for which are obtained from the first principle calculations, and the direct solution of the three-particle problem within the Tamm-Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.
The origin of the variation of photoluminescence (PL) spectra of monolayer tungsten disulfide (WS2) is investigated systematically. Dependence of the PL spectrum on the excitation power show that the relatively sharp component corresponds to excitons whereas the broader component at slightly lower energy corresponds to negatively charged trions. PL imaging and second harmonic generation measurements show that the trion signals are suppressed more than the exciton signals near the edges, thereby relatively enhancing the excitonic feature in the PL spectrum and that such relative enhancement of the exciton signals is more pronounced near approximately armchair edges. This effect is interpreted in terms of depletion of free electrons near the edges caused by structural defects and adsorption of electron acceptors such as oxygen atoms.