No Arabic abstract
We consider Quantum Electrodynamics in $2{+}1$ dimensions with $N_f$ fermionic or bosonic flavors, allowing for interactions that respect the global symmetry $U(N_f/2)^2$. There are four bosonic and four fermionic fixed points, which we analyze using the large $N_f$ expansion. We systematically compute, at order $O(1/N_f)$, the scaling dimensions of quadratic and quartic mesonic operators. We also consider Quantum Electrodynamics with minimal supersymmetry. In this case the large $N_f$ scaling dimensions, extrapolated at $N_f{=}2$, agree quite well with the scaling dimensions of a dual supersymmetric Gross-Neveu-Yukawa model. This provides a quantitative check of the conjectured duality.
We study $mathcal{N}=1$ supersymmetric three-dimensional Quantum Electrodynamics with $N_f$ two-component fermions. Due to the infra-red (IR) softening of the photon, $ep$-scalar and photino propagators, the theory flows to an interacting fixed point deep in the IR, $p_E ll e^2 N_f/8$, where $p_E$ is the euclidean momentum and $e$ the electric charge. At next-to-leading order in the $1/N_f$-expansion, we find that the flow of the dimensionless effective coupling constant $overline{al}$ is such that: $overline{al} ra 8/big(N_f ,(1+C/N_f)big) approx (8/N_f)(1-0.4317/N_f)$ where $C= 2,(12-pi^2)/pi^2$. Hence, the non-trivial IR fixed point is stable with respect to quantum corrections. Various properties of the theory are explored and related via a mapping to the ones of a $mathcal{N}=1$ model of super-graphene. In particular, we derive the interaction correction coefficient to the optical conductivity of super-graphene, $C_{rm sg} = (12-pi^2)/(2pi) = 0.3391$, which is six times larger than in the non-supersymmetric case, $C_{rm g} = (92-9pi^2)/(18pi) = 0.0561$.
We review the development of the large $N$ method, where $N$ indicates the number of flavours, used to study perturbative and nonperturbative properties of quantum field theories. The relevant historical background is summarized as a prelude to the introduction of the large $N$ critical point formalism. This is used to compute large $N$ corrections to $d$-dimensional critical exponents of the universal quantum field theory present at the Wilson-Fisher fixed point. While pedagogical in part the application to gauge theories is also covered and the use of the large $N$ method to complement explicit high order perturbative computations in gauge theories is also highlighted. The usefulness of the technique in relation to other methods currently used to study quantum field theories in $d$-dimensions is also summarized.
We study the analytic properties of the t Hooft coupling expansion of the beta-function at the leading nontrivial large-$N_f$ order for QED, QCD, Super QED and Super QCD. For each theory, the t Hooft coupling expansion is convergent. We discover that an analysis of the expansion coefficients to roughly 30 orders is required to establish the radius of convergence accurately, and to characterize the (logarithmic) nature of the first singularity. We study summations of the beta-function expansion at order $1/N_f$, and identify the physical origin of the singularities in terms of iterated bubble diagrams. We find a common analytic structure across these theories, with important technical differences between supersymmetric and non-supersymmetric theories. We also discuss the expected structure at higher orders in the $1/N_f$ expansion, which will be in the future accessible with the methods presented in this work, meaning without the need for resumming the perturbative series. Understanding the structure of the large-$N_f$ expansion is an essential step towards determining the ultraviolet fate of asymptotically non-free gauge theories.
In this work we compute the entanglement entropy in continuous icMERA tensor networks for large $N$ models at strong coupling. Our results show that the $1/N$ quantum corrections to the Fisher information metric (interpreted as a local bond dimension of the tensor network) in an icMERA circuit, can be related to quantum corrections to the minimal area surface in the the Ryu-Takayanagi formula. Upon picking two different non-Gaussian entanglers to build the icMERA circuit, the results for the entanglement entropy only differ at subleading orders in $1/G_N$, i.e., at the structure of the quantum corrections in the bulk. The fact that the large $N$ part of the entropy can be always related to the leading area term of the holographic calculation results thus very suggestive. These results, which to our knowledge suppose the first tensor network calculations at large $N$ and strong coupling, pave the road for using tensor networks to describe the emergence of continuous spacetime geometries from the the structure of entanglement in quantum field theory.
I consider quantum electrodynamics with many electrons in 2+1 space-time dimensions at finite temperature. The relevant dimensionless interaction parameter for this theory is the fine structure constant divided by the temperature. The theory is solvable at any value of the coupling, in particular for very weak (high temperature) and infinitely strong coupling (corresponding to the zero temperature limit). Concentrating on the photon, each of its physical degrees of freedom at infinite coupling only contributes half of the free-theory value to the entropy. These fractional degrees of freedom are reminiscent of what has been observed in other strongly coupled systems (such as N=4 SYM), and bear similarity to the fractional Quantum Hall effect, potentially suggesting connections between these phenomena. The results found for QED3 are fully consistent with the expectations from particle-vortex duality.