Do you want to publish a course? Click here

Revealing the Complicated Story of the Cetus Stream with StarGO

57   0   0.0 ( 0 )
 Added by Zhen Yuan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a novel cluster identification tool StarGO to explore the metal poor ([Fe/H] $<$ -1.5) outer stellar halo (d $>$ 15 kpc) of the Milky Way using data from Gaia, LAMOST and SDSS. Our method is built using an unsupervised learning algorithm, a self-organizing map, which trains a 2-D neural network to learn the topological structures of a data set from an n-D input space. Using a 4-D space of angular momentum and orbital energy, we identify three distinct groups corresponding to the Sagittarius, Orphan, and Cetus Streams. For the first time we are able to discover a northern counterpart to the Cetus stream. We test the robustness of this new detection using mock data and find that the significance is more than 5-sigma. We also find that the existing southern counterpart bifurcates into two clumps with different radial velocities. By exploiting the visualization power of StarGO, we attach MW globular clusters to the same trained neural network. The Sagittarius stream is found to have five related clusters, confirming recent literature studies, and the Cetus stream has one associated cluster, NGC 5824. This latter association has previously been postulated, but can only now be truly confirmed thanks to the high-precision Gaia proper motions and large numbers of stellar spectra from LAMOST. The large metallicity dispersion of the stream indicates that the progenitor cannot be a globular cluster. Given the mean metallicity of the stream, we propose that the stream is the result of a merger of a low-mass dwarf galaxy that hosted a large nuclear star cluster (NGC 5824).

rate research

Read More

147 - Jiang Chang 2020
A large number of new members ($sim$150) of the Cetus Stream (CS) were identified from their clustering features in dynamical space using 6D kinematic data by combining LAMOST DR5 and Gaia DR2 surveys. They map a diffuse structure that extends over at least 100 degrees in the northern and southern Galactic hemispheres, at heliocentric distances between 20 to 50 kpc. Taking advantage of this expanded dataset, we model the stream with a suite of tailored N-body simulations. Our findings exclude the possibility that the NGC 5824 globular cluster is the core of the progenitor of the stream, as postulated by previous studies. Our best models, which successfully reproduce the features of the CS indicate that the progenitor is likely a dwarf galaxy of $sim$ 2$times$10$^9$M$_{odot}$, with a diffuse disc morphology. The merger occured $sim$ 5 Gyr ago and since then it has experienced approximately eight apo-center passages. Our results suggest that NGC 5824 was either a globular cluster situated off-centre in the dwarf progenitor or, alternatively, it was the nuclear star cluster of another dwarf galaxy that has very similar orbit as the progenitor of the CS. In both scenarios, the progenitor systems would leave streams around NGC 5824, but with distinct distance distributions. To discriminate between these scenarios, the detection and accurate distance measurements of the predicted stream around the GC are crucial, which will be possible in the upcoming LSST era. Our simulations also predict that part of the Southern Cetus stream is very likely the newly discovered Palca stream, and possibly related to another, more diffuse Southern substructure, the Eridanus-Pheonix overdensity.
The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Streams properties change along its length, we have conducted an observational study of the H-alpha emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin H-alpha Mapper telescope, we detect H-alpha emission brighter than 30 - 50 mR in 26 of our 39 sight lines. This H-alpha emission extends more than 2-degree away from the HI emission. By comparing H-alpha and [OI] intensities, we find that regions with log NHI = 19.5 - 20.0 are 16 - 67% ionized. Most of the H-alpha intensities along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the Milky Way, and the extragalactic background. We find that the additional contribution from self ionization through a shock cascade that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of H-alpha emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.
In order to minimize environmental effects and gain an insight into the internal mechanisms that shape the properties of the early-type dwarf systems, we study one of the few isolated dwarf spheroidal galaxies (dSphs) of the Local Group (LG): Cetus. We obtained VLT/FORS2 spectra ($Rsim2600$) in the region of the nIR CaII triplet lines for 80 candidate red giant branch stars. The analysis yielded line-of-sight velocities and metallicities ([Fe/H]) for 54 bona fide member stars. The kinematic analysis shows that Cetus is a mainly pressure-supported ($sigma_v = 11.0_{-1.3}^{+1.6}$ km/s), dark-matter-dominated system ($M_{1/2}/L_V = 23.9_{-8.9}^{+9.7} M_odot/L_odot$) with no significant signs of internal rotation. We find Cetus to be a metal-poor system with a significant [Fe/H] spread (median [Fe/H] = -1.71 dex, median-absolute-deviation = 0.49 dex), as expected for its stellar mass. We report the presence of a mild metallicity gradient compatible with those found in other dSphs of the same luminosity; we trace the presence of a stellar population gradient also in the spatial distribution of stars in different evolutionary phases in ancillary SuprimeCam photometric data. There are tentative indications of two chemo-kinematically distinct sub-populations, with the more metal-poor stars showing a hotter kinematics than the metal-richer ones. Furthermore, the photometric dataset reveals the presence of a foreground population that most likely belongs to the Sagittarius stream. This study represents a first comprehensive analysis of Cetus chemo-kinematic properties. Our results add Cetus to the growing scatter in stellar-dark matter halo properties in low-mass galactic systems. The presence of a metallicity gradient akin to those found in similar systems inhabiting different environments may hint at metallicity gradients in LG early-type dwarfs being driven by internal mechanisms.
Stellar shells around galaxies could provide precious insights into their assembly history. However, their formation mechanism remains poorly empirically constrained, in particular the type of galaxy collisions at their origin. We present MUSE@VLT data of the most prominent outer shell of NGC 474, to constrain its formation history. The stellar shell spectrum is clearly detected, with a signal-to-noise ratio of around 65 pix$^{-1}$. We use a full spectral fitting method to determine the line-of-sight velocity and the age and metallicity of the shell and associated point-like sources within the MUSE field of view. We detect six GC candidates and eight PN candidates which are all kinematically associated to the stellar shell. We show that the shell has an intermediate metallicity, [M/H] = $-0.83^{+0.12}_{-0.12}$ and a possible $alpha$-enrichment, [$alpha$/Fe] ~ 0.3. Assuming the material of the shell comes from a lower mass companion, and that the latter had no initial metallicity gradient, such a stellar metallicity would constrain the mass of the progenitor to be around 7.4 x 10^8 M$_odot$, implying a merger mass ratio of about 1:100. However our census of PNs and earlier photometry of the shell would suggest a much higher ratio, around 1:20. Given the uncertainties, this difference is significant only at the ~1sigma level. We discuss the characteristics of the progenitor, in particular whether the progenitor could also be composed of stars from the low metallicity outskirts from a more massive galaxy. Ultimately, the presented data does not allow us to put a firm constraint on the progenitor mass. We show that at least two globular cluster candidates possibly associated with the shell are quite young, with ages below 1.5~Gyr. We also note the presence of a young (~1Gyr) stellar population in the center of NGC 474. The two may have resulted from the same event.
We present MUSE observations in the core of the HFF galaxy cluster MACS J1149.5+2223, where the first magnified and spatially-resolved multiple images of SN Refsdal at redshift 1.489 were detected. Thanks to a DDT program with the VLT and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hours of total integration time on a single target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to 7 background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the HST, we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the BCG, and a set of 88 reliable multiple images associated to 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN Refsdal. We exploit this valuable information to build 6 detailed strong lensing models, the best of which reproduces the observed positions of the multiple images with a rms offset of only 0.26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN Refsdal. We find that its peak luminosity should should occur between March and June 2016, and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN Refsdal host galaxy surface brightness distribution. We outline the roadmap towards even better strong lensing models with a synergetic MUSE and HST effort.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا