Do you want to publish a course? Click here

Revealing the Ionization Properties of the Magellanic Stream using Optical Emission

87   0   0.0 ( 0 )
 Added by Kathleen Barger
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Streams properties change along its length, we have conducted an observational study of the H-alpha emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin H-alpha Mapper telescope, we detect H-alpha emission brighter than 30 - 50 mR in 26 of our 39 sight lines. This H-alpha emission extends more than 2-degree away from the HI emission. By comparing H-alpha and [OI] intensities, we find that regions with log NHI = 19.5 - 20.0 are 16 - 67% ionized. Most of the H-alpha intensities along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the Milky Way, and the extragalactic background. We find that the additional contribution from self ionization through a shock cascade that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of H-alpha emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.



rate research

Read More

The Magellanic Stream and the Leading Arm form a massive, filamentary system of gas clouds surrounding the Large and Small Magellanic Clouds. Here we present a new component-level analysis of their ultraviolet (UV) kinematic properties using a sample of 31 sightlines through the Magellanic System observed with the Hubble Space Telescope/Cosmic Origins Spectrograph. Using Voigt profile fits to UV metal-line absorption, we quantify the kinematic differences between the low-ion (Si II and C II), intermediate-ion (Si III), and high-ion (Si IV and C IV) absorption lines and compare the kinematics between the Stream and Leading Arm. We find that the Stream shows generally simple, single-phase kinematics, with statistically indistinguishable b-value distributions for the low-, intermediate-, and high-ion components, all dominated by narrow (b<25 km/s) components that are well aligned in velocity. In contrast, we find tentative evidence that the Leading Arm shows complex, multi-phase kinematics, with broader high ions than low ions. These results suggest that the Stream is photoionized up to C IV by a hard ionizing radiation field. This can be naturally explained by the Seyfert-flare model of Bland-Hawthorn et al. (2013, 2019), in which a burst of ionizing radiation from the Galactic Center photoionized the Stream as it passed below the south Galactic pole. The Seyfert flare is the only known source of radiation that is both powerful enough to explain the H-alpha intensity of the Stream and hard enough to photoionize Si IV and C IV to the observed levels. The flares timescale of a few Myr suggests it is the same event that created the giant X-ray/gamma-ray Fermi Bubbles at the Galactic Center.
Since its discovery in 1996, the source of the bright H-alpha emission (up to 750 mR) along the Magellanic Stream has remained a mystery. There is no evidence of ionising stars within the HI stream, and the extended hot halo is far too tenuous to drive strong shocks into the clouds. We now present a hydrodynamical model that explains the known properties of the H-alpha emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker H-alpha (100-200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In our model, the clouds are evolving on timescales of 100-200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate. The ablated material falls onto the Galaxy as a warm drizzle which suggests that diffuse ionized gas at 10**4 K may be an important constituent of galactic accretion. The observed HI emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. When the ionized component of the Stream is fully accounted for, the rate of gas accretion is 0.4 Msun/yr, roughly twice the rate deduced from HI observations alone.
The dominant gaseous structure in the Galactic halo is the Magellanic Stream, an extended network of neutral and ionized filaments surrounding the Large and Small Magellanic Clouds (LMC/SMC), the two most massive satellite galaxies of the Milky Way. Recent observations indicate that the Clouds are on their first passage around our Galaxy, the Stream is made up of gas stripped from both the LMC and the SMC, and the majority of this gas is ionized. While it has long been suspected that tidal forces and ram-pressure stripping contributed to the Streams formation, a full understanding of its origins has defied modelers for decades. Several recent developments, including the discovery of dwarf galaxies associated with the Magellanic Group, the high mass of the LMC, the detection of highly ionized gas toward stars in the LMC and the predictions of cosmological simulations all support the existence of a halo of warm ionized gas around the LMC at a temperature of $sim5times10^{5};mathrm{K}$. Here we show that by including this Magellanic Corona in hydrodynamic simulations of the Magellanic Clouds falling onto the Galaxy, we can simultaneously reproduce the Stream and its Leading Arm. Our simulations explain the Streams filamentary structure, spatial extent, radial velocity gradient, and total ionized gas mass. We predict that the Magellanic Corona will be unambiguously observable via high-ionization absorption lines in the ultraviolet spectra of background quasars lying near the LMC. This prediction is directly testable with the Cosmic Origins Spectrograph on the Hubble Space Telescope.
70 - Elena DOnghia 2015
The Magellanic Clouds are surrounded by an extended network of gaseous structures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trailing the Clouds in their orbit around the Milky Way. When considered in tandem with its Leading Arm, the Stream stretches over 200 degrees on the sky. Thought to represent the result of tidal interactions between the Clouds and ram-pressure forces exerted by the Galactic corona, its kinematic properties reflect the dynamical history of the closest pair of dwarf galaxies to the Milky Way. The Stream is a benchmark for hydrodynamical simulations of accreting gas and cloud/corona interactions. If the Stream survives these interactions and arrives safely in the Galactic disk, its cargo of over a billion solar masses of gas has the potential to maintain or elevate the Galactic star formation rate. In this article, we review the current state of knowledge of the Stream, including its chemical composition, physical conditions, origin, and fate. We also review the dynamics of the Magellanic System, including the proper motions and orbital history of the Large and Small Magellanic Clouds, the first-passage and second-passage scenarios, and the evidence for a Magellanic Group of galaxies.
230 - Andrew J. Fox 2010
(Abridged) We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using HST/STIS and FUSE ultraviolet spectroscopy of two background AGN, NGC 7469 and Mrk 335. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sightlines the MS is detected in low-ion and high-ion absorption. Toward NGC 7469, we measure a MS oxygen abundance [O/H]_MS=[OI/HI]=-1.00+/-0.05(stat)+/-0.08(syst), supporting the view that the Stream originates in the SMC rather than the LMC. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335 this yields an ionization parameter log U between -3.45 and -3.15 and a gas density log (n_H/cm^-3) between -2.51 and -2.21. Toward NGC 7469 we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional-ionization model (equilibrium or non-equilibrium). This suggests the high-ion plasma is multi-phase. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of >19 toward NGC 7469 and >330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا