Do you want to publish a course? Click here

Quantum Language Processing

101   0   0.0 ( 0 )
 Added by Nathan Wiebe
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a representation for linguistic structure that we call a Fock-space representation, which allows us to embed problems in language processing into small quantum devices. We further develop a formalism for understanding both classical as well as quantum linguistic problems and phrase them both as a Harmony optimization problem that can be solved on a quantum computer which we show is related to classifying vectors using quantum Boltzmann machines. We further provide a new training method for learning quantum Harmony operators that describe a language. This also provides a new algorithm for training quantum Boltzmann machines that requires no approximations and works in the presence of hidden units. We additionally show that quantum language processing is BQP-complete, meaning that it is polynomially equivalent to the circuit model of quantum computing which implies that quantum language models are richer than classical models unless BPP=BQP. It also implies that, under certain circumstances, quantum Boltzmann machines are more expressive than classical Boltzmann machines. Finally, we examine the performance of our approach numerically for the case of classical harmonic grammars and find that the method is capable of rapidly parsing even non-trivial grammars. This suggests that the work may have value as a quantum inspired algorithm beyond its initial motivation as a new quantum algorithm.



rate research

Read More

We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality. We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar. Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same advantage. Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned. Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in mainstream AI, by placing linguistic structure at the heart of Wittgensteins meaning-is-context.
In this paper, we develop a compositional vector-based semantics of positive transitive sentences in quantum natural language processing for a non-English language, i.e. Persian, to compare the parametrized quantum circuits of two synonymous sentences in two languages, English and Persian. By considering grammar+meaning of a transitive sentence, we translate DisCoCat diagram via ZX-calculus into quantum circuit form. Also, we use a bigraph method to rewrite DisCoCat diagram and turn into quantum circuit in the semantic side.
In this work, we describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP. The language-modelling framework we employ is that of compositional distributional semantics (DisCoCat), which extends and complements the compositional structure of pregroup grammars. Within this model, the grammatical reduction of a sentence is interpreted as a diagram, encoding a specific interaction of words according to the grammar. It is this interaction which, together with a specific choice of word embedding, realises the meaning (or semantics) of a sentence. Building on the formal quantum-like nature of such interactions, we present a method for mapping DisCoCat diagrams to quantum circuits. Our methodology is compatible both with NISQ devices and with established Quantum Machine Learning techniques, paving the way to near-term applications of quantum technology to natural language processing.
81 - Xiao Yuan , Ke Liu , Yuan Xu 2016
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the International School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا