Do you want to publish a course? Click here

Experimental Quantum Randomness Processing

82   0   0.0 ( 0 )
 Added by Xiao Yuan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.



rate research

Read More

In contrast with software-generated randomness (called pseudo-randomness), quantum randomness is provable incomputable, i.e. it is not exactly reproducible by any algorithm. We provide experimental evidence of incomputability --- an asymptotic property --- of quantum randomness by performing finite tests of randomness inspired by algorithmic information theory.
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of $512$ bits with an average experiment time of less than $5$ min per block and with a certified error bounded by $2^{-64}approx 5.42times 10^{-20}$.
Our aim is to experimentally study the possibility of distinguishing between quantum sources of randomness--recently proved to be theoretically incomputable--and some well-known computable sources of pseudo-randomness. Incomputability is a necessary, but not sufficient symptom of true randomness. We base our experimental approach on algorithmic information theory which provides characterizations of algorithmic random sequences in terms of the degrees of incompressibility of their finite prefixes. Algorithmic random sequences are incomputable, but the converse implication is false. We have performed tests of randomness on pseudo-random strings (finite sequences) of length $2^{32}$ generated with software (Mathematica, Maple), which are cyclic (so, strongly computable), the bits of $pi$, which is computable, but not cyclic, and strings produced by quantum measurements (with the commercial device Quantis and by the Vienna IQOQI group). Our empirical tests indicate quantitative differences, some statistically significant, between computable and incomputable sources of randomness.
Randomness expansion where one generates a longer sequence of random numbers from a short one is viable in quantum mechanics but not allowed classically. Device-independent quantum randomness expansion provides a randomness resource of the highest security level. Here, we report the first experimental realization of device-independent quantum randomness expansion secure against quantum side information established through quantum probability estimation. We generate $5.47times10^8$ quantum-proof random bits while consuming $4.39times10^8$ bits of entropy, expanding our store of randomness by $1.08times10^8$ bits at a latency of about $13.1$ h, with a total soundness error $4.6times10^{-10}$. Device-independent quantum randomness expansion not only enriches our understanding of randomness but also sets a solid base to bring quantum-certifiable random bits into realistic applications.
129 - D. Kielpinski 2008
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا