We apply the general Ansatz in geometric flows on homogeneous spaces proposed by Jorge Lauret for the Laplacian co-flow of invariant $G_2$-structures on a Lie group, finding an explicit soliton on a particular almost Abelian $7$-manifold.
We observe that the DeTurck Laplacian flow of G2-structures introduced by Bryant and Xu as a gauge fixing of the Laplacian flow can be regarded as a flow of G2-structures (not necessarily closed) which fits in the general framework introduced by Hamilton in [4].
We prove the hypersymplectic flow of simple type on standard torus $mathbb{T}^4$ exists for all time and converges to the standard flat structure modulo diffeomorphisms. This result in particular gives the first example of a cohomogeneity-one $G_2$-Laplacian flow on a compact $7$-manifold which exists for all time and converges to a torsion-free $G_2$ structure modulo diffeomorphisms.
We study the existence of left invariant closed $G_2$-structures defining a Ricci soliton metric on simply connected nonabelian nilpotent Lie groups. For each one of these $G_2$-structures, we show long time existence and uniqueness of solution for the Laplacian flow on the noncompact manifold. Moreover, considering the Laplacian flow on the associated Lie algebra as a bracket flow on $R^7$ in a similar way as in [23] we prove that the underlying metrics $g(t)$ of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in the nilpotent Lie group, as $t$ goes to infinity.
We study the heat trace for both the drifting Laplacian as well as Schrodinger operators on compact Riemannian manifolds. In the case of a finite regularity potential or weight function, we prove the existence of a partial (six term) asymptotic expansion of the heat trace for small times as well as a suitable remainder estimate. We also demonstrate that the more precise asymptotic behavior of the remainder is determined by and conversely distinguishes higher (Sobolev) regularity on the potential or weight function. In the case of a smooth weight function, we determine the full asymptotic expansion of the heat trace for the drifting Laplacian for small times. We then use the heat trace to study the asymptotics of the eigenvalue counting function. In both cases the Weyl law coincides with the Weyl law for the Riemannian manifold with the standard Laplace-Beltrami operator. We conclude by demonstrating isospectrality results for the drifting Laplacian on compact manifolds.
This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc...) Using these isometries, we are able to explicitely describe the geodesics, first in the parametric case, then by modding out the paremetrization and considering horizontal vectors. We also compute the sectional curvature for these spaces, and show, in particular, that the space of closed curves modulo rotation and change of parameter has positive curvature. Experimental results that explicitly compute minimizing geodesics between two closed curves are finally provided