No Arabic abstract
The strange quark contributions to the electromagnetic form factors of the proton are ideal quantities to study the role of hidden flavor in the properties of the proton. This has motivated intense experimental measurements of these form factors. A major remaining source of systematic uncertainty in these determinations is the assumption that charge symmetry violation (CSV) is negligible. We use recent theoretical determinations of the CSV form factors and reanalyse the available parity-violating electron scattering data, up to $Q^2$ $sim$ 1 GeV$^2$. Our analysis considers systematic expansions of the strangeness electric and magnetic form factors of the proton. The results provide an update to the determination of strangeness over a range of $Q^2$ where, under certain assumptions about the effective axial form factor, an emergence of non-zero strangeness is revealed in the vicinity of $Q^2$ $sim$ 0.6 GeV$^2$. Given the recent theoretical calculations, it is found that the current limits on CSV do not have a significant impact on the interpretation of the measurements and hence suggests an opportunity for a next generation of parity-violating measurements to more precisely map the distribution of strange quarks.
Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the protons electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the protons strange form factors to challenge the predictions of QCD.
We explore the electromagnetic contribution to the charge symmetry breaking in the octet baryon masses using a subtracted dispersion relation based on the Cottingham formula. For the proton-neutron mass splitting we report a minor revision of the recent analysis of Walker-Loud, Carlson and Miller. For the electromagnetic structure of the hyperons we constrain our analysis, where possible, by a combination of lattice QCD and SU(3) symmetry breaking estimates. The results for the baryon mass splittings are found to be compatible with recent lattice QCD+QED determinations. The uncertainties in the dispersive analysis are dominated by the lack of knowledge of the hyperon inelastic structure.
The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), which is consistent with experimental values, and has an order of magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution function are also presented.
We calculate the gravitational form factors of the pion, sigma meson, and rho meson in the Nambu-Jona-Lasinio (NJL) model of quantum chromodynamics. The canonical energy-momentum tensor (EMT) is used in their derivation, allowing the possibility of an antisymmetric contribution when the hadron has intrinsic spin. We show that the asymmetric graviton vertex arising from the canonical EMT satisfies a simpler Ward-Takahashi identity (WTI) than the symmetric graviton vertex of the Belinfante EMT. The necessity of fully dressing the graviton vertex through the relevant Bethe-Salpeter equation is demonstrated for observing both the WTI and a low-energy pion theorem. Lastly, we calculate static moments of the meson EMT decompositions, obtaining predictions for the meson mass radii. We find light cone mass radii of 0.27 fm for the pion, 0.32 fm for the sigma, and 0.39 fm for the rho. For the pion and rho, these are smaller than the light cone charge radii, respectively 0.51 fm and 0.45 fm, while we have a sigma charge radius of zero. Our light cone pion mass radius agrees with a phenomenological extraction from KEKB data.
We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.