Do you want to publish a course? Click here

Dispersive estimate of the electromagnetic charge symmetry violation in the octet baryon masses

127   0   0.0 ( 0 )
 Added by Ross Young
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We explore the electromagnetic contribution to the charge symmetry breaking in the octet baryon masses using a subtracted dispersion relation based on the Cottingham formula. For the proton-neutron mass splitting we report a minor revision of the recent analysis of Walker-Loud, Carlson and Miller. For the electromagnetic structure of the hyperons we constrain our analysis, where possible, by a combination of lattice QCD and SU(3) symmetry breaking estimates. The results for the baryon mass splittings are found to be compatible with recent lattice QCD+QED determinations. The uncertainties in the dispersive analysis are dominated by the lack of knowledge of the hyperon inelastic structure.



rate research

Read More

We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume corrections and the finite lattice spacing effects on the baryon masses. A reasonable description of all the publicly available $n_f=2+1$ lattice QCD data is achieved.Utilyzing the Feynman-Hellmann theorem, we determine the nucleon sigma terms as $sigma_{pi N}=55(1)(4)$ MeV and $sigma_{sN}=27(27)(4)$ MeV.
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $sigma_{pi N} = 55(1)(4)$ MeV and $sigma_{sN} = 27(27)(4)$ MeV, respectively.
We analyze the constraint structure of the interaction of vector mesons with baryons using the classical Dirac constraint analysis. We show that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We then require the self-consistency condition of the interacting system in terms of perturbative renormalizability to obtain relations for the renormalized coupling constants at the one-loop level. As a result we find a universal interaction with one coupling constant which is the same as in the massive Yang-Mills Lagrangian of the vector-meson sector.
We describe a constraint analysis for the interaction of the vector-meson octet with the baryon octet. Applying Diracs Hamiltonian method, we verify that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We argue how the requirement of self consistency with respect to perturbative renormalizability may lead to relations among the renormalized coupling constants of the system.
The strange quark contributions to the electromagnetic form factors of the proton are ideal quantities to study the role of hidden flavor in the properties of the proton. This has motivated intense experimental measurements of these form factors. A major remaining source of systematic uncertainty in these determinations is the assumption that charge symmetry violation (CSV) is negligible. We use recent theoretical determinations of the CSV form factors and reanalyse the available parity-violating electron scattering data, up to $Q^2$ $sim$ 1 GeV$^2$. Our analysis considers systematic expansions of the strangeness electric and magnetic form factors of the proton. The results provide an update to the determination of strangeness over a range of $Q^2$ where, under certain assumptions about the effective axial form factor, an emergence of non-zero strangeness is revealed in the vicinity of $Q^2$ $sim$ 0.6 GeV$^2$. Given the recent theoretical calculations, it is found that the current limits on CSV do not have a significant impact on the interpretation of the measurements and hence suggests an opportunity for a next generation of parity-violating measurements to more precisely map the distribution of strange quarks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا